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Positive and Negative Mixtures in Relativistic
Schrödinger Theory

S. Rupp1,2 and M. Sorg1

The general formalism of relativistic Schr¨odinger theory (RST) is specialized to a scalar
two-particle system with electromagnetic interactions (scalar helium atom). The set of
dynamically allowed field configurations splits up into positive and negative mixtures
and pure states. The static and spherically symmetric solutions are constructed by means
of first-order perturbation theory for the case of an attractive Coulomb potential. The
corresponding energy levels for the positive and negative mixtures resemble the emer-
gence of ortho and para states in the conventional quantum theory. The associated
energy eigenvalues predicted by the RST seem to undergo a certain kind ofmixture
degeneracyas the RST analog of the conventionalexchange degeneracy. The charge
densities of the positive mixtures assimilate, whereas the densities of the negative mix-
tures recede from one another. Thus, positive (negative) mixtures strongly resemble
the bosonic (fermionic) matter of the conventional theory when the Pauli principle is
applied.

1. INTRODUCTION AND SURVEY

Perhaps the most important and powerful notion in theoretical physics, be-
ing set up for the purposes of understanding the physical phenomena, is the
“conservation law.” This concept emerges in both classical and quantum physics
with comparable significance, and therefore any conserved quantity surely repre-
sents some “element of reality” (in the sense of Einsteinet al., 1935). But despite
their profound meaning, the conservation laws are not understood completely be-
cause their true origin appears to be mysterious. At best, the conservation laws
may be traced back to some physical “principle.” Mostly such a principle is first
grasped intuitively by its discoverer and is afterwards recast in mathematical terms
in order to be verified (or falsified) by means of appropriate experiments and
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observations. In the history of science, famous examples of this kind refer to the
following:

• Relativity Principle(Einsteinet al., 1924), which inspired the development
of special relativity (; conservation of total four-momentum of closed
systems),
• Equivalence Principle(Einstein et al., 1924; Stachel, 1987), underly-

ing Einstein’s gravitation (; local energy–momentum conservation
∇µTµν = 0),
• Heisenberg’sQuantization Principles(Heisenberg, 1930), where the con-

served quantities are deduced from the Heisenberg equations of motion.

1.1. Pauli Principle

This paper deals with some questions centered around one of those funda-
mental principles, the “Pauli principle” (mostly, Pauli exclusion principle, e.g.
Duck and Sudarshan, 1998). Originally the Pauli principle was set up in the form
of an exclusion postulate so as to explain the spectral lines and the internal struc-
ture of atoms and molecules: any electronic quantum state defined in terms of
single-particle quantum numbers can be occupied by only one electron so that no
two electrons can have identical quantum numbers. More generally speaking, one
might nowadays look upon the Pauli principle as the postulate of a fundamen-
tal dichotomy: elementary matter exists in two distinct forms, namelyfermions
(obeying the original exclusion principle) andbosons. The latter do not only dis-
regard the exclusion postulate but, on the contrary, even tend (if not disturbed by
thermal excitations) to crowd into one single-particle quantum state (; Bose–
Einstein condensation). The associated conservation law for this boson–fermion
dichotomy of matter says that any particle must be either of the fermionic type or
of the bosonic type, with exclusion of mixed types and of transitions between the
two types. Recent experimental tests of this superselection rule yield the result that
it is strictly obeyed: non-Pauli processes can only occur with a frequency less than
1 part in 1034 (Sudbery, 1990). Thus the boson–fermion conservation law stands
on a comparably fundamental level as the energy–momentum conservation law
(and its violation can therefore hardly be used to solve certain puzzles of contem-
porary physics, e.g. the solar-neutrino problem by means of non-Paulian burning
of hydrogen (Plaga, 1989).

However from the purely theoretical point of view, a rigorous foundation of
the Pauli principle presents some problems. It is possible to conceive a more general
form of quantum theory (“paraquantization” (Ohnuki and Kamefuchi, 1982)), and
within this general framework the original Pauli principle represents only a very
special subcase. It seems not clear why para-bosons and para-fermions do not exist
in nature. One merely may suppose that the validity of the ordinary Pauli principle
might have to do something with the fact that our space–time has 1+ 3 dimensions,
for in a 1+ 2 dimensional space–time a graded transition between the two types



P1: GCQ/ P2: / QC:

International Journal of Theoretical Physics [ijtp] PP232-343690 September 7, 2001 10:18 Style file version Nov. 19th, 1999

Positive and Negative Mixtures in Relativistic Schrödinger Theory 1819

of matter is possible (see the theory of “anyons” in connection with the fractional
quantum Hall effect (Wilczek, 1990)). Such an unclarified theoretical situation with
the Pauli principle may facilitate to consider also alternative forms of the matter
dichotomy, e.g. as it emerges in the relativistic Schr¨odinger theory (RST) (Sorg,
1992, 1997a,b). For a comparison of both alternative approaches to the matter
dichotomy, it is instructive to consider some concrete physical situation where the
predictions can be directly opposed to one another: the two-electron atoms.

1.2. Ortho and Para States

In principle, one tests the Pauli claim by confining some particles to a bounded
region of three-space (e.g. two electrons around the nucleus of a helium atom) and
looks at their energy distribution. Theexactenergy level scheme{En} as solution
of the Schr¨odinger eigenvalue problem

Ĥ (1,2)9(1,2)= En9(1,2) (1.1)

is not obtainable in most cases, but in order to obtain the desiredqualitativeenergy
distribution one may be satisfied to know the levels approximately by means of
perturbation theory. Furthermore, neglecting the spin interactions, the electronic
wave functions factorize in a spatial part and a spin part so that the spatial part alone
may be either symmetric or antisymmetric. Thus, for the spinless approximation
one tries the following entangled single-particle states for the spatial part of the
wave function (Blochincev, 1964):

(S)ψ(Er1, Er2) = 1√
2

(ψI (Er1) · ψII (Er2)+ ψI (Er2) · ψII (Er1)) (1.2a)

(A)ψ(Er1, Er2) = 1√
2

(ψI (Er1) · ψII (Er2)− ψI (Er2) · ψII (Er1)), (1.2b)

which are exact solutions of the two-particle Schr¨odinger equation (1.1) when the
electronic interactionŝH int (=·· e2

|Er1−Er2| ) are switched-off (; exchange degeneracy).
The standard procedure of first-order perturbation theory then yields for the

energy corrections(1)E12 of the unperturbed two-particle states (1.2) as a conse-
quence of the electronic interactions

(1)E12 = UC± EG. (1.3)

Here the positive (negative) sign corresponds to the symmetrized (antisymme-
trized) trial functions (1.2). Consequently, the first-order energy levels (EB) of
the helium atom are found to be split up into the well-known parahelium (A) and
orthohelium (S) states, thus eliminating the exchange degeneracy:

(1,2)EB,S
∼= −(0)EB,1− (0)EB,2+UC+ EG (1.4a)

(1,2)EB,A
∼= −(0)EB,1− (0)EB,2+UC− EG. (1.4b)
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Here the exact single-particle binding energies have been denoted by(0)EB,a(a =
1, 2); they build up the zero-order approximation of the exact result. Moreover,
the “Coulomb integral” UC is due to the classical electrostatic interaction energy
of the single-particle charge distributionsρI (=·· |ψI |2) andρII (=·· |ψII |2), i.e.

UC = e2
∫

dV1 dV2
ρI (Er1) · ρII (Er2)

|Er1− Er2| , (1.5)

and finally the “exchange integral” EG (being responsible for the splitting into the
para and ortho states) is given by

EG = e2
∫

dV1 dV2
ψ∗I (Er1)ψII (Er1)ψ∗II (Er2)ψI (Er2)

|Er1− Er2| . (1.6)

The numerical coincidence of the first-order approximations (1.4) with the
experimental numbers is bad: for instance, for the energy difference of ortho and
para states associated with the 1s and 2s single-particle states one finds in the
conventional first-order approximation (Grau, 1993)

(1,2)EB,S− 1,2EB,A = 2EG
∼= 2.38 eV (1.7)

whereas the experimental value is only 0.8 eV (see Martin, 1883, 1987). Never-
theless the predicted qualitative splitting of the helium levels into the ortho and
para sublevels is found to be actually realized in nature and this (together with a lot
of similar effects in atomic and molecular physics) is generally believed to be an
experimental verification of the (ordinary) Pauli principle. Clearly, the numerical
coincidences of the corresponding theoretical and experimental values may be fur-
ther improved by applying more subtle approximation techniques (Drake, 1996),
taking into account the screening of the nuclear charge. However, in the present
paper we are satisfied with a comparison of the first-order approximations of the
conventional theory and RST; see Fig. 1. (Contrary to the case of the conventional
theory, the first-order approximation scheme of RST already implies the screening
of the nuclear charge (Ruppet al., 2000).

The conclusion, to be drawn from such a result, surely must be that the
boson-fermion dichotomy of matter is adequately expressed by the Pauli princi-
ple. Furthermore, since this principle could be incorporated successfully into the
conventional quantum theory, the latter framework thus appears to have received
additional support of its “truth.” However these conclusions cannot imply that
the conventional quantum theory is the only theoretical framework capable of ac-
counting for the matter dichotomy. Indeed we shall demonstrate subsequently that
RST is also able to predict such a dichotomic phenomenon, albeit in a somewhat
different manner; and the corresponding theoretical predictions are comparable to
those of the conventional quantum theory, especially concerning the emergence
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Fig. 1. Total energy(1)E12 in first-order approximation. The RST first-order ap-
proximation (solid lines) for the two-particle interaction energy(1)E12 (5.23)
approaches the pure-state result forC∗ → ∞ (i.e. (1)E12(∞) = UC). On
the other hand the experimental values ((S)E12, (A) E12) are adopted forC∗ in
the vicinity of the minimally possible valuesC±. The numerical coincidence
with the experimental values(S)E12 = 9.63 eV and(A) E12 = 8.83 eV occurs for
C(+)
∗ = 0.62 andC(−)

∗ = 1.13. This supports the hypothesis that the electrons
in a real atom may actually be in an RST mixture rather than in a pure state. In
contrast to this, the first-order prediction (1.3) of conventional quantum theory
yields the following results (Grau, 1993):

(1)E12(S)= UC + EG ∼= 11.422 eV+ 1.194 eV= 12.616 eV

(1)E12(A) = UC − EG ∼= 11.422 eV− 1.194 eV= 10.228 eV.

of some kind of degeneracy phenomenon (see Fig. 1). More concretely, the ex-
change degeneracy of the symmetrized and antisymmetrized states (1.2) of the
conventional theory finds its RST counterpart in form of themixture degeneracy
referring to the fact that positive and negative mixtures have the same binding
energy, at least in the vicinity of the pure states. Whether the present mixture de-
generacy is broken by the interelectronic interactions in the same way as the con-
ventional exchange degeneracy (1.3) requires further clarification (in a separate
paper).

1.3. Survey of RST Results

In RST, the matter dichotomy arises via the dynamical subdivision of the set
of mixture configurations into two subsets:positive and negative mixtures(the
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Fig. 2. Mixtures and pure states. The relativistic von Neumann equation (2.5) subdivides the
density configuration space into three subsets: the pure states occupy theFierz coneσ∗ = 0, positive
mixtures (σ∗ = 1) are geometrically represented by the two-parted hyperboloid, and the negative
mixtures (σ∗ = −1) by the one-parted hyperboloid. The mixtures approach the pure states for
ζ →∞. The general RST dynamics forbids a change of the mixture type, cf. (3.60). The positive
(negative) mixtures may be considered as the RST counterparts of the bosonic (fermionic) matter
of the conventional quantum theory.

intermediate configurations are the pure states; see Fig. 2). Anyone of these two
RST mixtures exhibits some striking features reminding one strongly of the cor-
responding properties of fermionic and bosonic matter in the conventional theory:
the single-particle densitiesρa(x) of both particles (a = 1, 2) tend to assimilate
(ρ1(x) ∼= ρ2(x) ; charge fusion) in the positive mixture case (resembling the
Bose–Einstein condensation of bosonic matter), whereas these densities recede
from one another in the negative mixture case (; charge separation), resembling
rather the Pauli exclusion mechanism for fermions. Thus the positive (negative)
mixtures may be considered as RST analog of bosonic (fermionic) matter of the
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conventional theory. As indicated by our preliminary perturbative results (Fig. 1),
this behavior then may lead to a similar ortho–para splitting of the helium levels in
RST similarly as it is encountered in the conventional theory. Just as in the latter
case, the negative mixtures (⇔ fermions) seem to have lower energy eigenvalue
than the positive mixtures (⇔ bosons), cf. the conventional splitting (1.4).

Our procedure of developing these results is the following:
In Section 2 we briefly sketch the general structure of RST insofar as it is rel-

evant for the present question of matter dichotomy. Next, in Section 3, the general
structure is specialized down to theC2-realization of RST with an abelian gauge
group (i.e.U (1)×U (1)). At this stage, there arises the matter dichotomy in a most
natural way, namely through the observation that the density configuration space
is four-dimensional and is naturally equipped with a pseudo-Euclidean metric. It
is well known that such a geometry is characterized by a cone structure, i.e. in
the present case by a “Fierz cone” representing geometrically the pure states. The
“positive mixtures” are then represented by those points of the configuration space
which have positive squared distance from the origin (; interior of the Fierz cone)
and similarly the “negative mixtures” occupy the “exterior” cone regions with neg-
ative squared distance from the origin (see Fig. 2). Thus the Fierz cone plays here a
similar part as does the light cone in special relativity. The analogous construction
for theR2-realizationof RST has been discussed in a preceding paper (Mattes
and Sorg, 1999a). The general RST dynamics forbids transitions from positive
to negative mixtures (and vice versa), similarly as in special relativity a particle
cannot be accelerated (decelerated) from subluminal (superluminal) velocity to
superluminal (subluminal) velocity.

In Section 4, the interrelationships between mixtures and pure states are stud-
ied in detail. The important point here is that all the physical densities as well as
the dynamical equations can be written in such a form that the transitions from
mixtures to pure states (and vice versa) can be continuously performed. There ex-
ists a “mixture variable” (ζ ) which measures the “purity” of a field configuration
(ζ = ∞: pure state;ζ < ∞: mixture). In order to restrict the discussion to these
mixture effects exclusively, one neglects certain components of the Hamiltonian
(the “exchange fields”). This simplification enables one to eliminate the mixture
variables completely in favor of the pure-state variables so that we can describe
the mixtures exclusively in terms of the pure-state variables and some integration
constantC∗ (i.e. the “mixture parameter”). However the corresponding dynam-
ical equations for the pure-state variables now become highly nonlinear for the
mixture case and acquire their usual linear form for the pure states only when
themixture parameter(C∗) adopts its pure-state value (C∗ ⇒ ∞). Thus the latter
parameter is a nice handle to change the purity of the field configuration contin-
uously from one extremal case (C∗ → ∞: pure states) to a certain other extreme
situation (C∗ → C+ = 0: positive mixture limit;C∗ → C− = 1: negative mixture
limit).
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In Section 5, the treatment of the static and spherically symmetric field con-
figurations is presented in great detail in order to prepare the investigation of
2-electron atoms in the last section. Similarly as in conventional quantum theory,
it is also very difficult in RST to find the exact solutions for such an intricate
physical situation, and therefore one is forced to develop an adequate pertur-
bation theory. In the corresponding first-order approximation, one then gets the
energy eigenvalues and the charge distribution for the two-particle system. This
then yields some amazing results concerning the matter dichotomy mentioned
previously:

• For any value of the mixing parameterC∗, the first-order perturbation
results say that the positive mixtures have greater energy eigenvalue than the
negative mixtures just as is true for the symmetric case (1.4a) in comparison
to the antisymmetric case (1.4b) of the conventional theory (see Fig. 1).
• The RST energy eigenvalues depend upon the mixing parameterC∗ in such

a way that in the pure-state limit (C∗ → ∞) the results of the conventional
theory with vanishing exchange energyEG (1.6) are reproduced (i.e. ne-
glection of the splitting into para and ortho states). This means that passing
over from an RST pure state to an RST mixture implies the splitting into
para and ortho states.
• In the conventional theory, the first-order exchange energyEG (1.6) (pro-

ducing the para–ortho splitting) is in bad agreement with the experimental
data. It is true that the corresponding RST results depend upon the mixing
parameterC∗ whose value cannot be fixed within the present perturbation
order, but there exist values forC∗ such that the first-order RST results
become arbitrarily close to the experimental data (see Fig. 1). It is true that
the reliability of first-order perturbation theory for this range of the mix-
ing parameterC∗ remains to be clarified but the emergence of the mixture
degeneracy for the pure-state limitC∗ → ∞ is safely established.
• The charge densities of the positive and negative mixtures exhibit a rather

different pattern: while the densitiesρa of positive mixtures assimilate
(ρ1(x) ≈ ρ2(x)) and thus demonstratecharge fusion, the densities of nega-
tive mixtures recede from one another and try to occupy different regions of
space ((charge separation); see Fig. 3). Thus the positive mixtures strongly
resemble the bosonic matter and the negative mixtures the fermionic matter
of the conventional theory.

Clearly the conventional theory provides us with the possibility to produce more
realistic predictions by taking account of the electron spins, but this possibility
exists also for the RST. Indeed, there is no problem with the Dirac theory of
the spinning electron, which may be considered as nothing else than a special
C4-realization of RST (see Mattes and Sorg, 1999b; Sigg and Sorg, 1997; Sorg,
1997b).
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Fig. 3. Electrostatic charge distributions(0)ρa. (a) For the pure states (σ∗ = 0 or
C∗ ⇒ ∞), both charge distributions(0)ρa (4.7) coincide with the squares ((0)La)2

of the amplitudes. (b) But for the negative mixtures (σ∗ = −1) there occurs a
completecharge separationin the limit caseC∗ ⇒ C− (=1). The first charge is
confined to theinterior regiony < y∗ (=3.1633),(0)ρ1 6= 0,(0)ρ2 ≡ 0, and from
this region the second particle is kept off. Conversely, the first particle cannot
invade in this limit the exterior regiony > y∗ which is exclusively occupied by
the second particle:(0)ρ1 ≡ 0,(0)ρ2 6= 0. (c) For the positive mixtures (σ∗ = +1),
both charge distributions(0)ρa are fusedinto one another ((0)ρ1 ≡ (0)ρ2) in the
limit C∗ ⇒ 0 and then together occupy all three-space (0≤ y < ∞).

1825
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Fig. 3. (Continued)

2. RELATIVISTIC SCHR ÖDINGER THEORY

Let us first collect the relevant results of some preceding papers into the
following sketch of the fundamental building blocks of RST in order to sufficiently
elucidate the peculiarities of that theory.

2.1. Wave Function and Intensity Matrix

In RST, matter is described by an (Hermitian)intensity operatorI(x) (i.e.
a matrix-valued section of the corresponding fiber bundle over space–time). In
general, the intensity matrixI is due to a mixture but in special situations it may
be sufficient to deal exclusively with a wave function9(x) (i.e. the section of a
complex or real vector bundle). In this latter case the intensity matrixI degenerates
to the tensor product of the wave function9:

I → 9 ⊗ 9̄. (2.1)

The necessary and sufficient condition for such a degeneration ofI is theFierz
identity(Mattes and Sorg, 1999b)

I2− I · tr I = 0. (2.2)

Whenever this identity is obeyed byI, it is said that matter is described by thepure
state9 (2.1). In order to obtain some measure for the “purity” ofI one defines
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theFierz deviatorDF through (Mattes and Sorg, 1999b)

DF := I · tr I − I2 (2.3)

and thus a necessary condition for purity is the vanishing of theFierz deviat-
ion1F

1F := tr DF. (2.4)

Concerning the relationship between mixtures and pure states, there does not
exist such a rigorous distinction between both concepts in RST as in conventional
quantum theory (in atomic physics) where one traditionally deals mainly with the
pure states. It was not until recently that one considers the decay of pure states into
mixtures as a most natural process (Giuliniet al., 1996) and thus acknowledges
the concept of mixture as being of equal (or even higher) relevance as the pure
states. However in RST, the relationship between mixtures and pure states is more
intimate in the sense that the matter configuration is a mixture in one region of
space–time and is a pure state in an other region (determined by the zeros of the
Fierz deviation1F (2.4)). Subsequently we will present an example of this kind,
namely the mass-eigenvalue problem of a scalar two-particle system being bound
by the electrostatic Coulomb force (i.e. pointlike force center). With neglection of
the exchange effects, such a system can be parametrized by two (scalar) amplitude
fields La(x) and a mixing parameterC∗, which is an integration constant and
measures the purity of the matter configuration (C∗ → ∞: pure state,C∗ < ∞:
mixture). Thus, besides the globally pure states (C∗ = ∞) there are the mixtures
(C∗ < ∞) which may, however, degeneratelocally to a pure state, namely at the
zeros of the amplitude fieldsLa. Since these amplitudes tend to zero (for localized
configurations) at spatial infinity, one has a pure state outside (r →∞) but a
mixture inside (r → 0). Whether such mixtures are equipped with a greater or a
smaller binding energy in comparison to the pure states is the main concern of the
present investigation.

2.2. Hamiltonian Dynamics

The motion of matter is governed by the field equation for the intensity
operatorI, i.e. the relativistic von Neumann equation (RNE)

DµI = i

hc
[I · H̄µ −Hµ · I ]. (2.5)

Here, theHamiltonianHµ is a GL(N, C)-valued one-form which in general is
neither Hermitian nor anti-Hermitian. It is to be determined from its field equations,
namely theintegrability condition

DµHν −DνHµ + i

hc
[Hµ,Hν ] = i hcFµν (2.6)
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and theconservation equation

DµHµ − i

hc
Hµ ·Hµ = −i hc

[(Mc

h

)2

+ iG
]
. (2.7)

The mass operatorM is assumed to be covariantly constant

DµM = 0, (2.8)

which can easily be achieved for identical particles by simply putting

M = M · 1, (2.9)

whereM is the particle mass. But obviously theHamiltonian dynamics[(2.6) and
(2.7)] is based upon two new objects{G, Fµν}, which must now be explained in
some detail.

First consider the bundle curvatureFµν which is closely related to the princi-
ple ofminimal couplingof matter and gauge fields. The gauge covariance of RST
is namely ensured by consistent use of the gauge covariant derivativeD, e.g. for
the HamiltonianHµ:

DµHν := ∇µHν + [Aµ,Hν ]. (2.10)

The coordinate-covariant derivative over pseudo-Riemannian space–time is de-
noted here by∇ andAµ is thebundle connectionone-form which takes its values
in the Lie algebra of the gauge group. The correspondingcurvatureFµν is defined
as usual

Fµν := ∇µAν −∇νAµ + [Aµ,Aν ] (2.11)

and thus obeys the well-knownBianchi identity

DλFµν +DµFνλ +DνFλµ ≡ 0. (2.12)

Furthermore, the curvatureFµν enters the integrability condition (2.6) on the right-
hand side, and therefore it is just that condition which ensures the validity of the
bundle identityfor the intensity matrixI

[DµDν −DνDµ]I = [Fµν , I]. (2.13)

For the special case (2.1), where the matter system is in a pure state9, the
RNE (2.5) is replaced by the relativistic Schr¨odinger equation (RSE)

i hcDµ9 = Hµ ·9, (2.14)

where

Dµ9 =·· ∂µ9 +Aµ ·9,
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and the integrability condition (2.6) then ensures the validity of the bundle identity
for 9:

[DµDν −DνDµ]9 ≡ Fµν ·9. (2.15)

Thus, it should have become obvious that the meaning of the integrability condition
(2.6) refers to the intrinsic consistency of the system of field equations for matter.

2.3. Gauge Field

The field equation for the gauge field itself is chosen as the (generalized)
Maxwell equation

DµFµν = 4παJν . (2.16)

Here the coupling operatorαmust be covariantly constant (Dµα ≡ 0) in order that
the Maxwell equations (2.16) automatically imply the charge conservation law as
usual

DµJµ ≡ 0, (2.17)

namely via the bundle identity for the curvatureFµν
DµDνFµν ≡ 0. (2.18)

Sometimes it may also be convenient to recast the gauge field equations in
component form. To this end, decompose the connectionAµ and its curvatureFµν
with respect to the generators{τ a} of the gauge group (more precisely, holonomy
group) as follows:

Aµ = Aaµτ
a (2.19a)

Fµν = Faµντ
a. (2.19b)

Thefield strengths Faµν read then in terms of thegauge potentials Aaµ

Faµν = ∇µAaν −∇νAaµ (2.20)

where we have restricted ourselves to an abelian gauge group (i.e., [τ a, τ b] = 0),
e.g. to the product groupU (1)×U (1)×U (1)× · · · ×U (1) for an electromag-
netic N-particle system (Matteset al., 1999).

A similar decomposition for the currentJµ reads

Jµ = jaµτ
a (2.21)

so that the abstract conservation law (2.17) yields theN conservation laws

∇µ jaµ = 0 (2.22)

where

a = 1, . . . , N (2.23)
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for the N charged particles; furthermore, the abstract Maxwell equations (2.16)
become more concretely

∇µFaµν = 4πα jaν . (2.24)

(For identical particles we can consider the coupling matrixα as an ordinary real
number.)

2.4. Convertor and Currents

Next turn to the second new object in the Hamiltonian dynamics, namely the
convertorG in the conservation equation (2.7), and observe that this equation is
responsible for the conservation laws (2.22). Remember here that our total field
system consists of the RNE (2.5), the Hamiltonian dynamics [(2.6) and (2.7)], and
the Maxwell equation (2.16). But this system can be closed only through specifying
the currentJµ in terms of the matter field, i.e. the intensity matrixI (or the wave
function9, resp.). Clearly this specification of the currentsjaµ in terms of the
matter field must be performed in such a way that the conservation laws (2.22)
areautomaticallyobeyed as a direct consequence of the operator equations forI
andHµ! This requirement will then reveal the meaning of the convertorG on the
right-hand side of the conservation equation (2.7).

In order to get the desired link between the currentsjaµ and the intensity
matrixI we introduce the (Hermitian)velocity operators vaµ (=v̄aµ) and put

jaµ = tr (I · vaµ). (2.25)

This ansatz converts the conservation requirement for the currentsjaµ (2.22) to
the following condition upon the velocity operators:

∇µ jaµ = tr

{
I ·
(
Dµvaµ + i

hc
[H̄µ · vaµ − vaµ ·Hµ]

)}
=! 0. (2.26)

In order to meet now with this condition we subject the velocity operators to the
following requirement:

Dµvaµ + i

hc
(H̄µ · vaµ − vaµ ·Hµ) = h

Mc
Ga (2.27)

where the newly introduced (Hermitian) convertorsGa are required to obey the
following algebraic constraint:

tr (Ga · I ) = 0. (2.28)
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Now it is easy to see that a solution of the requirement (2.27) forvaµ is
given by

vaµ = i

2Mc2
(H̄µ · τa + τa ·Hµ) (2.29)

because by means of the conservation equation (2.7) we then immediately find the
Hermitian convertorsGa in terms of the formerG (2.7) as

Ga = i

2
(τa · G + Ḡ · τa) ≡ Ḡa. (2.30)

Indeed this is a nice result because it enables us to satisfy the original conservation
requirement for the currentsjaµ (2.22), as ultimately expressed by that constraint
(2.28), by simply putting

G · I = 0. (2.31a)

Additionally this algebraic constraint (2.31a), if transcribed to the wave function9:

G ·9 = 0, (2.31b)

ensures the validity of theKlein–Gordon equation(KGE)

DµDµ9 +
(Mc

h

)2

9 = 0. (2.32)

This is easily verified by differentiating once more the RSE (2.14) and applying
just the conservation equation (2.7).

2.5. Energy–Momentum Density

Thus we have obtained now a closed system of equations of motion for our
electromagneticN-particle system. In order to gain further confidence into its
intrinsic consistency, consider the energy–momentum conservation law

∇µTµν = fν . (2.33)

Here, the force densityfν exerted upon the matter distribution emerges as the
source of the matter energy–momentum densityTµν and, according to the original
Lorentzian idea, it should be composed of the currentsjaµ and field strengthsFaµν ,
i.e. one expects the following form:

fν = hcFaµν j aµ. (2.34)

However this result is actually obtained within the framework of our RST, provided
we construct the energy–momentum densityTµν of matter in the following way:

Tµν = tr (I · Tµν) (2.35)
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and build up theenergy–momentum operatorTµν in terms of the HamiltonianHµ

Tµν = 1

2Mc2
[H̄µ ·Hν + H̄ν ·Hµ − gµν(H̄λ ·Hλ − (Mc2))2]. (2.36)

2.6. Polarization

Finally, let us also mention the effect ofpolarizationof matter which will
subsequently help us to classify the totality of possible field configurations into
certain simple subcases. Although the HamiltonianHµ is in general non-Hermitian
(Hµ 6= H̄µ), it is convenient to deal with Hermitian objects through the splitting

Hµ = hc(Kµ + iLµ), (2.37)

where thekinetic fieldKµ (=K̄µ) is the Hermitian part of the HamiltonianHµ and
the localization fieldLµ (=L̄µ) constitutes its anti-Hermitian part. Introducing
this splitting into the velocity operatorsvaµ (2.29) yields a decomposition of these
objects into theirconvectionandpolarizationparts

vaµ = (C)vaµ + (P)vaµ. (2.38)

Here, the convection part(C)vaµ is determined by the kinetic fieldKµ

(C)vaµ = i h

2Mc
{Kµ, τa} (2.39)

whereas the polarization part is rather related to the localization fieldLµ through

(P)vaµ = h

2Mc
[Lµ, τa]. (2.40)

Clearly this then yields an analogous splitting of the currents themselves:

jaµ = (C) jaµ + (P) jaµ (2.41a)
(C) jaµ = tr

(
I · (C)vaµ

)
(2.41b)

(P) jaµ = tr
(
I · (P)vaµ

)
. (2.41c)

After all the essential ingredients of RST have been collected, we can turn
to the two-particle systems being characterized by two independent and nontrivial
“charge numbers” za (a = 1, 2)

za =
∫

(S)
jaµ dSµ, (2.42)

which appear as the integrals of the currentsjaµ over some three-dimensional
(space-like) hypersurface (S) of space–time. We will consider only identical par-
ticles and will then interpret the charge numbersza as dimensionsless quantum
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numbers (z1 = z2 = 1). Thus the integrals (2.42) acquire the status of normaliza-
tion conditions.

3. C2-REALIZATION OF RST

For a two-particle system it should be self-evident that the minimal fiber
dimensionN for the vector bundle of wave functions isN = 2. Thus the wave
functions9(x) have two components

9 =
(
ψ1

ψ2

)
=
(

L1 e−iα1

L2 e−iα2

)
(3.1)

and the corresponding operators over the two-dimensional complex spaceC2 are
GL(2,C)-valued objects. A thorough study of these operator sections is indispens-
able for the subsequent deductions of the two-particle wave equations. Thus we
have to first clarify thekinematicalfundamentals of the two-particle theory and
then we can discuss itsdynamicalaspects.

3.1. Operator Basis and Gauge Group

As usual, the kinematics is discussed by reference to a certain operator basis.
A Hermitian basis for the operators acting over the vector fiberC2 is given by two
projectorsPa = (P̄a)

P1 · P2 = 0 (3.2a)

P1+ P2 = 1 (3.2b)

trP1 = trP2 = 1, (3.2c)

which may be complemented by two furtherpermutators5a = 5̄a(a = 1, 2) such
that the following algebra holds:

{5a, Pb} = 5a (3.3a)

[P1,5a] = −[P2,5a] = i εa
b5

b (3.3b)

{5a,5b} = 2δab · 1 (3.3c)

[5a,5b] = 2i εab(P1− P2). (3.3d)

A convenient representation of this algebra is given by the Pauli matrices
{σx, σy, σz}, i.e.

P1 = 1

2
(1+ σz) (3.4a)

P2 = 1

2
(1− σz) (3.4b)
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51 = σx (3.4c)

52 = σy. (3.4d)

This operator basis{Pa,5b} is called thesingle-particle basis(SPB) because
the projectorsPa can be thought to project onto the single-particle subspaces
of the total vector fiberC2 = C1⊕ C1, so that the corresponding vector bundle of
two-particle wave functions appears as the Whitney sum of the two single-particle
bundles.

Similarly as in classical physics, a system of two point particles can be con-
sidered as one particle with internal degress of freedom (thus introducing the
center-of-mass frame). In this sense theextended-particle basis{1,Q,5a} (EPB)
is obtained from the SPB through

P1 + P2 = 1 (3.5a)

P1 − P2=·· Q. (3.5b)

Correspondingly, any operator can be expanded with respect to both basis sys-
tems where its components are then subject to the corresponding transformation
relations. For instance, the intensity operatorI reads in the SPB formalism

I = ρaPa + 1

2
sa5

a (3.6)

(summation over double indices in opposite positions, the fiber metric isgab=··
−tr (τa · τb) ≡ δab), or it can be specified in the EPB formalism as

I = 1

2
(ρ · 1+ q ·Q+ sa5

a). (3.7)

Evidently the corresponding transformation formulae are then given by

ρ = ρ1+ ρ2 (3.8a)

q = ρ1− ρ2. (3.8b)

Similar relations also apply to the kinetic fieldKµ

(3.9a)
Kµ =

{
KaµPa + Qaµ5

a, (SPB)

1
2 Kµ · 1+ 1

2kµQ+ Qaµ5
a, (EPB) (3.9b)

and to the localization fieldLµ

(3.10a)
Lµ =

{
LaµPa + Naµ5

a, (SPB)

1
2 Lµ · 1+ 1

2lµQ+ Naµ5
a, (EPB). (3.10b)
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Furthermore, the single-particle generatorsτa for the electromagnetic two-
particle gauge groupU (1)×U (1) are chosen as (a = 1, 2)

τa = −iPa (3.11)

and thus are covariantly constant

Dµτa = 0. (3.12)

And again, instead of decomposing the connectionAµ and curvatureFµν with
respect to SPB (3.11) as shown in (2.19a) and (2.19b), one can resort to the EPB
decomposition

Aµ = −i Âµ · 1− iaµ ·Q (3.13a)

Fµν = −i F̂µν · 1− i fµνQ, (3.13b)

with the EPB components being related to their SPB counterparts through

Âµ = 1

2
(A1µν + A2µν) (3.14a)

aµ = 1

2
(A1µν − A2µν), (3.14b)

and similarly for the field strengths

F̂µν = 1

2
(F1µν + F2µν) (3.14c)

fµν = 1

2
(F1µν − F2µν). (3.14d)

Clearly, themean gauge potential̂Aµ generates themean field strengtĥFµν :

F̂µν = ∇µ Âν −∇ν Âµ, (3.14e)

and the analogous relationship holds for theinternal gauge potential aµ andinter-
nal field strength fµν :

fµν = ∇µaν −∇νaµ. (3.14f)

The EPB formulation seems to be advantageous because it directly leads
to the emergence of an SO(2) subbundle. Indeed the typical gauge elementS ∈
U (1)×U (1) is written in the EPB form as

S = exp(−i A · 1− ia ·Q)

= exp(−i A · 1) · exp(−iaQ) (3.15)

:= Stot(A) · Srel(a)
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and then it is found that the permutators5a transform as an SO(2) gauge doublet
under the action of therelative group{Srel}, i.e.

S ·5a · S−1 = Srel ·5a · S−1
rel = 5b · S

◦ b
a. (3.16)

HereS
◦

is an SO(2) element of the relative group

S
◦ a

b = cos 2a · δa
b − sin 2a · εa

b (3.17)

and εab = −εba is the SO(2) invariant permutation tensor in two dimensions.
The correspondingSO(2 ) subconnectionω

◦ a
bµ is immediately deduced from the

original U (1)×U (1) connectionAµ by means of the covariant derivative of the
permutator doublet

Dµ5a = 5b · ω◦ b
aµ (3.18a)

with

ω
◦ b

aµ = −2aµ · εb
a. (3.18b)

Thus we arrive at the plausible result that theinternal degree of freedom
of the extended particle is gauged by the relative subgroup{Srel} alone. This
internal degree of freedom is not affected at all by the action of the total subgroup
{Stot} which is expected to refer to theexternal(i.e. center-of-mass) motion of the
two-particle system. As a simple example for this mechanism, consider a general
U (1)×U (1) gauge transformation of the intensity matrixI:

I → I ′ = S · I · S−1

= 1

2
(ρ · 1+ q ·Q+ s′a5

a). (3.19)

Obviously, the total and relative densitiesρ andq remain invariant whereas the
overlap densities{sa} transform as the components of an SO(2) vector field

s′a = sb · S
◦ b

a. (3.20)

As a consequence the derivative of this vector must also be constructed in a gauge
covariant way:

Dµsa = ∂µsa − sbω
◦ b

aµ. (3.21)

3.2. Rotating Basis and Polarization Currents

The existence of the overlap densitiessa gives rise to a rotating but gauge
invariant permutator doublet̂5, 5̃:

5̂ = ŝa5
a (3.22a)

5̃ = εabŝa5b, (3.22b)

where

ŝa = sa

s
, s2 = sasa.
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With respect to thisrotating basis(RTB) {1,Q, 5̃, 5̂} the intensity matrix reads

I = 1

2
(ρ · 1+ qQ+ s5̂). (3.23)

Subsequently we shall frequently make use of this decomposition ofI, to-
gether with an analogous decomposition of theexchange fields Qaµ and Naµ

occurring in the Hamiltonian [(3.9) and (3.10)]:

Qaµ = (‖)Qµ · ŝa + (⊥)Qµ · εb
aŝb (3.24a)

Naµ = (‖)Nµ · ŝa + (⊥)Nµ · εb
aŝb. (3.24b)

The obvious advantage of the RTB is the gauge invariance of the operator com-
ponents. Therefore in place of dealing with the gauge objectssa, Qaµ, andNaµ

one can now resort to their gauge invariant counterpartss, (‖)Qµ, (⊥)Qµ, (‖)Nµ, and
(⊥)Nµ. This enables us to write down subsequently the field equations in a gauge
invariant way. (The RTB formalism has always been used for the treatments of
Dirac’s spinor theory as a possibleC4-realization of RST; see, e.g., Mattes and
Sorg, 1999b.)

Finally, let us also discuss the polarization currents with respect to the change
of basis from SPB to RTB. Originally the currents had been defined in their single-
particle form jaµ (2.25). Observing here too that splitting (2.41a)–(2.41c) into
the convection and polarization parts yields for the first current by means of the
two-particle Hamiltonian [(3.9) and (3.10)]

j1µ = (C) j1µ + (P)j1µ (3.25a)

(C) j1µ = h

Mc

(
ρ1K1µ + 1

2
s · (‖)Qµ

)
(3.25b)

(P)j1µ = h

2Mc
· εabsaNbµ ≡ h

2Mc
s · (⊥)Nµ (3.25c)

and similarly for the second current

j2µ = (C) j2µ + (P)j2µ (3.26a)

(C) j2µ = h

Mc

(
ρ2K2µ + 1

2
s · (‖)Qµ

)
(3.26b)

(P) j2µ = − h

2Mc
εabsaNbµ ≡ − h

2Mc
s · (⊥)Nµ. (3.26c)

From this result we learn that, for the special case of a pure state9 (3.1), the
polarization parts(P) jaµ can be different from zero only when the two wave
functionsψa are overlapping and thus the overlap densitys becomes nonzero!
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The single-particle densities of a pure 2-particle state assume their corresponding
special forms

ρ1 = tr(I · P1)→ 9 · P1 ·9 = L2
1 (3.27a)

ρ2 = tr(I · P2)→ 9 · P2 ·9 = L2
2 (3.27b)

s1 = tr(I ·51)→ 9 ·51 ·9 = 2L1L2 cos (α1− α2) (3.27c)

s2 = tr(I ·52)→ 9 ·52 ·9 = 2L1L2 sin (α1− α2) (3.27d)

s = tr(I · 5̂)→ 9 · 5̂ ·9 = 2L1L2. (3.27e)

From the last equation one can now see explicitly that the overlap scalars actually
is nonzero only for overlapping wave packetsψa. (Hint: convince yourself for the
present pure-state case [(3.27a)–(3.27e)] that the Fierz identity (2.2) is satisfied,
e.g. in the EPB form

ρ2− (q2+ s2) = 0. (3.28)

Of course, the general form [(3.25a)–(3.26c)] for the single-particle currents does
hold for the mixtures and not just for the pure states.

But now transcribe the single-particle currentsjaµ to their EPB formsJµ, jµ

Jµ =·· j1µ + j2µ (3.29a)

jµ =·· j1µ − j2µ (3.29b)

and then find

Jµ = h

2Mc

(
ρ · Kµ + q · kµ + 2s · (‖)Qµ

)
(3.30a)

jµ = h

2Mc

(
ρ · kµ + q · Kµ + 2s · (⊥)Nµ

)
. (3.30b)

This is a very satisfying result because thetotal current Jµ (3.30a) does not con-
tain the polarization parts (∼(⊥)Nµ), cf. (3.25c) and (3.26c), and is therefore built
up exclusively by the convection parts of the single-particle currents. Indeed the
total currentJµ must be considered as anexternalobject which survives the point-
particle limit (q, s |→ 0) and therefore mainly describes the point-particle prop-
erties of the extended particle with a weak coupling to its intrinsic degrees of
freedom. Observe also that it is the total currentJµ which has to carry the total
charge number (N = 2) of the two-particle system, cf. (2.42)∫

(S)
Jµ · dSµ =

∫
(S)

j1µ · dSµ +
∫

(S)
j2µ · dSµ = 2, (3.31)
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whereas therelative current jµ appears as a “neutral” current and therefore carries
a trivial charge number:∫

(S)
jµ · dSµ =

∫
(S)

j1µ · dSµ −
∫

(S)
j2µ · dSµ = 0. (3.32)

However the internal degrees of freedom of the extended particle are de-
scribed by the relative currentjµ (3.30b) which contains twice the polarization
parts (∼(⊥)Nµ) of the single-particle currents. Concerning the polarization part
(P)jaµ, observe that such a quantity does not exist in a truly (scalar) single-particle
theory where only single particle is present. Such a single-particle situation is to
be described by theC1-realization of RST (Mattes and Sorg, 1999a), which is
the adequate description of point particles and coincides with the conventional
Klein–Gordon theory. Thus we have to conclude that the polarization properties of
either (scalar) particle of a two-particle system do arise by virtue of the presence
of the other particle! This appears plausible becausescalarparticles cannot carry
intrinsic polarization.

3.3. Integrability Condition

Now that the kinematics of the two-particle systems has sufficiently been clar-
ified through the preceding considerations, one can turn to the dynamical aspects
of those systems. First let us study somewhat closer the Hamiltonian dynamics
[(2.6) and (2.7)] and defer the density dynamics (2.5) to the next subsection (the
dynamical equations for the gauge field (2.16) are not discussed in the present
paper; for their treatment, see Matteset al., 1999). The two-particle dynamics has
already been investigated in a preceding paper (Mattes and Sorg, 1999c), but this
was done in the SPB formalism which however seems not so convenient as the
RTB formalism for the present purposes. Therefore it may be sufficient here to
take over those dynamical SPB relations which are of interest in the present con-
text, and transcribe them to their RTB from which then facilitates the subsequent
investigations.

In this sense, consider first the integrability condition (2.6) which in the first
place yields for the EPB localization fieldLµ (3.10b) the following relation:

∇µLν −∇νLµ = 0. (3.33)

Thus the vectorLµ turns out to be a gradient field and therefore enables us to
introduce anamplitude field L(x) through

Lµ = ∂µL2

L2
= 2

∂µL

L
. (3.34)

But in contrast to this pleasant result, the other localization coefficientlµ (3.10b)
surely is not a gradient field in general, because the integrability condition implies
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a nontrivial curl relation:

∇µlν −∇ν lµ = 4
(

(‖)Nµ · (⊥)Qν − (‖)Nν · (⊥)Qµ − (⊥)Nµ · (‖)Qν + (⊥)Nν · (‖)Qµ

)
.

(3.35)

The next interesting point refers to the kinetic fieldsKµ andkµ, cf. (3.9b).
By means of the integrability condition, their curl is found to be related to the field
strengths but this occurs in a rather different way for the total and relative parts,
namely

∇µKν −∇νKµ = 2F̂µν (3.36a)

and

∇µkν −∇νkµ = 2 fµν + 2Gµν , (3.36b)

where theexchange field strength Gµν is found as

Gµν = 2
(

(‖)Qµ · (⊥)Qν − (‖)Qν · (⊥)Qµ − (‖)Nµ · (⊥)Nν + (‖)Nν · (⊥)Nµ
)
. (3.36c)

Observe here that the total kinetic fieldKµ “feels” twice the mean field strength
F̂µν ! The reason is that the mean fieldF̂µν refers to only one charge unit by its very
definition (3.14c) but on the other hand the total kinetic fieldKµ is related to the
total Jµ (3.30a) with its double charge number (3.31). This is seen more clearly
by reconstructing these currents in terms of the corresponding velocity operators
Vµ andvµ which yields

Jµ = tr(I · Vµ) (3.37a)

jµ = tr(I · vµ), (3.37b)

with thetotal velocity operatorVµ being identical to the total kinetic fieldKµ (up
to a constant factor)

Vµ := v1µ + v2µ = h

Mc
Kµ. (3.38)

Thus the total velocityVµ is of purely convective nature (cf. the velocity splitting
(2.38) and (2.39)), whereas the relative velocityvµ

vµ := v1µ − v2µ = 1

2Mc2
(H̄µ ·Q+Q ·Hµ) (3.39)

contains also a polarization part(P)vµ

vµ = (C)vµ + (P)vµ, (3.40)
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which together with its convective counterpart(C)vµ is found in the RTB form as

(C)vµ = h

2Mc
{Kµ,Q} = h

2Mc
(Kµ ·Q+ kµ · 1) (3.41a)

(P)vµ = i h

2Mc
[Q, Lµ] = h

Mc

(
(⊥)Nµ · 5̂− (‖)Nµ · 5̃

)
. (3.41b)

In any case, the convective nature (3.38) of the total currentJµ (3.37a) together
with its double charge number (3.31) makes it plausible that the curl ofKµ should
betwicethe mean fieldF̂µν as it is expressed by Eq. (3.36a).

But the curl relation for the relative kinetic fieldkµ (3.36b) has some striking
features too. Evidently this field does not only “feel” the internal field strength
fµν , being defined through Eq. (3.14d), but also theexchange field strength Gµν
(3.36c). It is easy to see that this field obeys the following condition in a pseudo-
Riemannian space–time:

∇µGνλ +∇νGλµ +∇λGµν ≡ 0, (3.42)

which is necessary and sufficient in order that anexchange potential Gµ exists so
thatGµν is just its curl:

Gµν = ∇µGν −∇νGµ. (3.43)

Consequently we can rewrite the curl relation forkµ (3.36b) as

∇µ′kν −∇ν ′kµ = 2 fµν (3.44)

so that now the modified field′kµ
′kµ := kµ − 2Gµ (3.45)

exclusively “feels” the internal field strengthfµν and nothing else.
Subsequently we shall make use of the modified field′kµ in place of the

original kµ. For instance, the SO (2) covariant derivative of the unit vectorŝa

defined in Eqs. (3.22a) and (3.22b) is found as (Mattes and Sorg, 1999c)

Dµŝa= εb
aŝb · ′kµ. (3.46a)

Or similarly, the derivatives of the RTB operators are computed as

Dµ5̂a = ′kµ · 5̃ (3.46b)

Dµ5̃a = −′kµ · 5̂. (3.46c)

Furthermore it should also be mentioned that the exchange potentialGµ enters
not only the modified kinetic field′kµ (3.45) but also plays an important part for
the remaining integrability conditions upon the Hamiltonian coefficientsQaµ and
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Naµ which read in the RTB version

∇µ(‖)Qν −∇ν (‖)Qµ = lµ · (⊥)Nν − lν · (⊥)Nµ

+ 2
(

(⊥)Qµ · Gν − (⊥)Qν · Gµ

)
(3.47a)

∇µ(⊥)Qν −∇ν (⊥)Qµ = −lµ · (‖)Nν + lν · (‖)Nµ
− 2

(
(‖)Qµ · Gν − (‖)Qν · Gµ

)
(3.47b)

∇µ(‖)Nν −∇ν (‖)Nµ = −lµ · (⊥)Qν + lν · (⊥)Qµ

+ 2
(

(⊥)Nµ · Gν − (⊥)Nν · Gµ

)
(3.47c)

∇µ(⊥)Nν −∇ν (⊥)Nµ = lµ · (‖)Qν − lν · (‖)Qµ

− 2
(

(‖)Nµ · Gν − (‖)Nν · Gµ

)
. (3.47d)

This system may look somewhat complicated but it admits the pleasant possibility
of putting three of the exchange fields to zero ((‖)Qµ = (⊥)Nµ = Gµ ≡ 0) and re-
taining the other two ((‖)Nµ 6= 0, (⊥)Qµ 6= 0). We shall make use of this possibility
in the next section.

3.4. Conservation Equation

Similar to the preceding discussion of the integrability condition (2.6), the
closer inspection of the conservation equation (2.7) will also yield a deeper in-
sight into the structure of RST. Here the first point arises with the convertor
G which enters the abstract conservation equation on its right-hand side (2.7).
Clearly before we can exploit this equation in a similar way as was done with
the integrability condition, one must first determine the convertorG from its alge-
braic constraint (2.31a) where the intensity matrixI is given in its RTB form by
equation (3.23).

The solution forG in terms ofI is most conveniently expressed by a certain
reparametrization of the latter operator. For that purpose rewrite the densitiesρ , q,
ands of the intensity operatorI in terms of the amplitude fieldL (3.34) in the
following way:

ρ = ZT · L2 (3.48)

q = ZR · L2 (3.49)

s = ZO · L2, (3.50)

thus introducing therenormalization factors ZT, ZR, and ZO. Consequently the
intensity operatorI (3.23) can be written as

I = Z · L2, (3.51)
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with the renormalization operatorZ being parametrized by the renormalization
factors through

Z = 1

2
(ZT · 1+ ZR ·Q+ ZO · 5̂). (3.52)

Thus the previous algebraic constraint upon the convertorG (2.31a) is recast into
the form

G · Z = 0 (3.53)

from which we have to determineG in terms of the renormalization factorsZT, ZR,
andZO. This is a simple algebraic problem with a four-parametric solution which
can easily be found but will not be presented here because our main interest con-
cerns the mixtures and for these the convertorG must always vanish (consequently
we will put G ≡ 0 from now on).

With this presumption, consider first the localization coefficientLµ (3.10b)
for which the conservation equation says

∇µLµ + 1

2
(LµLµ + lµlµ − KµKµ − kµkµ)+ 2

[(
Mc

h

)2

+ (‖)Nµ · (‖)Nµ

+ (⊥)Nµ · (⊥)Nµ − (‖)Qµ · (‖)Qµ − (⊥)Qµ · (⊥)Qµ

]
= 0. (3.54)

Sometimes it may be more instructive to work with the amplitude fieldL(x) in
place of the localization fieldLµ (3.34); the present equation (3.54) then reads in
terms ofL

¤L +
[(

Mc

h

)2

+ 1

4
(lµlµ − KµKµ − kµkµ)+ (‖)Nµ · (‖)Nµ + (⊥)Nµ · (⊥)Nµ

− (‖)Qµ · (‖)Qµ − (⊥)Qµ · (⊥)Qµ

]
· L = 0. (3.55)

Thisamplitude equationplays an important part in RST because it essentially is the
relativistic counterpart of Schr¨odinger’s nonrelativistic equation from which the
energy eigenvalues of the system are to be determined (in RST one should rather
speak of amass-eigenvalue problem; this can be solved exactly for the Coulomb
force in the single-particle case (Mattes and Sorg, 1999c)). Observe also that
the amplitude equation (3.55) contains the second localization coefficient which,
however, is not a gradient field, cf. (3.35). Therefore the abstract integrability
condition (2.6) does not admit, in general, a second amplitude field, obeying a
second amplitude equation, but instead we have to keep the original equation for
lµ corresponding to Eq. (3.54) forLµ:

∇µlµ + Lµlµ − Kµkµ = 0. (3.56)
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Finally, let us write down the source equations for both kinetic fields

∇µKµ + Lµ · Kµ + lµ · kµ + 4
(

(‖)Qµ · (‖)Nµ + (⊥)Qµ · (⊥)Nµ
) = 0 (3.57a)

∇µkµ + Lµ · kµ + lµ · Kµ = 0, (3.57b)

and similarly for the remaining Hamiltonian coefficients

∇µ(‖)Qµ − (⊥)Qµ · ′kµ + Lµ · (‖)Qµ + Kµ · (‖)Nµ = 0 (3.58a)

∇µ(⊥)Qµ + (‖)Qµ · ′kµ + Lµ · (⊥)Qµ + Kµ · (⊥)Nµ = 0 (3.58b)

∇µ(‖)Nµ − (⊥)Nµ · ′kµ + Lµ · (‖)Nµ + Kµ · (‖)Qµ = 0 (3.58c)

∇µ(⊥)Nµ + (‖)Nµ · ′kµ + Lµ · (⊥)Nµ + Kµ · (⊥)Qµ = 0. (3.58d)

3.5. Density Dynamics

The RNE (2.5) is the field equation for the intensity matrixI whose RTB
decomposition (3.23) led us to the total densityρ, relative densityq, and overlap
densitys. Therefore one could now transcribe the RNE into the corresponding
field equations for these individual densities. However, in the meantime we have
already introduced the associated renormalization factorsZT, ZR, andZO [(3.48)–
(3.50)] and therefore we can at once translate the density dynamics forρ , q, and
s into the correspondingrenormalization dynamics

∂µZT = ZR · lµ + 2ZO · (‖)Nµ (3.59a)

∂µZR = ZT · lµ − 2ZO · (⊥)Qµ (3.59b)

∂µZO = 2
(
ZT · (‖)Nµ + ZR · (⊥)Qµ

)
. (3.59c)

This system admits a first integral in the form

Z2
T −

(
Z2

R+ Z2
O

) = σ∗, (3.60)

where themixture indexσ∗ is a constant and can be chosen without loss of generality
asσ∗ = 0,±1. By introducing the densities (3.48)–(3.50) into the component form
(3.28) of the Fierz identity (2.2), we see that the valueσ∗ = 0 stands for thepure
stateswhich therefore may be parametrized by themixture variableζ andoverlap
angleξo as

ZT = 1

2
eζ (3.61a)

ZR = 1

2
eζ · cosξo (3.61b)

ZO = 1

2
eζ · sinξo. (3.61c)
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Forσ∗ = +1 we have thepositive mixtures

ZT = coshζ (3.62a)

ZR = sinhζ · cosξo (3.62b)

ZO = sinhζ · sinξo, (3.62c)

and forσ∗ = −1 thenegative mixtures

ZT = sinhζ (3.63a)

ZR = coshζ · cosξo (3.63b)

ZO = coshζ · sinξo. (3.63c)

For the subsequent computations it is convenient to collect all three cases into one
formula by putting

ZII =··
√

Z2
R+ Z2

O (3.64)

so that we have for all three cases

ZR = ZII · cosξo (3.65a)

ZO = ZII · sinξo (3.65b)

with

Z2
T − Z2

II = σ∗; (3.66)

see also Fig. 2.
The interesting point with this threefold subdivision of the density configura-

tion space lies in the fact that the pure states, albeit separated kinematically from
the mixtures, can be approximated by the latter with unlimited precision, namely
through the limit processζ →∞. Whether this kinematically possible process is
also admitted by the dynamics must be studied seperately. For such a purpose, it
is convenient to consider directly the field equations for the internal variablesζ

andξo. Here, one combines the two localization coefficientslµ and(‖)Nµ into two
new vectorsgµ andhµ

gµ = 2 (‖)Nµ · cosξo− lµ · sinξo (3.67a)

hµ = 2 (‖)Nµ · sinξo+ lµ · cosξo, (3.67b)

and then the desired field equations forζ andξo are deduced from the original
renormalization dynamics (3.59) as

∂µζ = hµ (3.68a)

∂µξo = 2

(
(⊥)Qµ + ZT

2ZII
· gµ

)
. (3.68b)
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But with the introduction of two new dynamical variables (gµ, hµ) one also wants
to know their field equations which are easily deduced from the corresponding
equations for the old pair (lµ, (‖)Nµ). Thus the curl relations for the new vectors
read

∇µgν −∇νgµ = ZT

ZII
[hµ · gν − hν · gµ] + 4

[
(⊥)Nµ

(
cosξo · Gν + sinξo · (‖)Qν

)
− (⊥)Nν ·

(
cosξo · Gµ + sinξo · (‖)Qµ

)]
(3.69a)

∇µhν −∇νhµ = 0. (3.69b)

The last equation is of course trivial becausehµ has already been revealed to be a
gradient field, cf. (3.68a). Analogously, the source equations for the new vectors
are easily written down (Ruppet al., 2000) but are supressed here because they can
subsequently be reformulated as wave equations for two scalar fieldsζ andχ . Here,
the first scalarζ has already been introduced through Eq. (3.68a) in connection
with the new vectorhµ, and the second scalarχ generates the other new vectorgµ
in a similar way

gµ = ZII · ∂µχ , (3.70)

provided we resort to those simplified configurations which have vanishing ex-
change fields(‖)Qµ, (⊥)Nµ, andGµ:

Gµ = (⊥)Nµ = (‖)Qµ ≡ 0. (3.71)

Subsequently we will mainly be occupied with this kind of field systems. The
vanishing of the three exchange fields (3.71) leaves us with some constraints upon
the remaining fields; for instance the source equation (3.58a) for the vanishing
(‖)Qµ fixes the directional derivative of the overlap angleξo along the relative
kinetic fieldkµ as

kµ · ∂µξo = (Kµgµ) cosξo+ (kµhµ) sinξo+ ZT

ZII
gµkµ. (3.72)

A similar constraint is implied by the source equation (3.58d) for the vanishing
(⊥)Nµ:

Kµ · ∂µξo = (kµgµ) cosξo+ (kµhµ) sinξo+ ZT

ZII
gµKµ. (3.73)

4. MIXTURES AND PURE STATES

The relationship between mixtures and pure states requires some clarification.
The reason here is that the Fierz identity (2.2) establishes some algebraic constraint
for the pure states which therefore must have a reduced number of degrees of
freedom in comparison to the mixtures. On the other hand, the result of Fig. 3
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says that the pure states occupy the (two-dimensional) Fierz cone and the mixtures
occupy the (two-dimensional) hyperboloids and thus both the mixtures and the
pure states appear to possess the same number of degrees of freedom. But this
cannot be true because the pure states can be considered as the limit configuration
ζ →∞, and therefore the internal variableζ must drop out for the description of
pure states. In what way can this cancellation ofζ be conceived? A first hint comes
from combining both reparametrizations (3.27a)–(3.27e) and (3.48)–(3.50) of the
physical densities (ρ , q, s) with (3.62) for the case of the pure states:

ρ ⇒ L2
1+ L2

2 =
1

2
eζ · L2 =·· ′L2 (4.1a)

q ⇒ L2
1− L2

2 =
1

2
eζ · L2 cosξo = ′L2 cosξo (4.1b)

s⇒ 2L1L2 = 1

2
eζ · L2 sinξo = ′L2 sinξo. (4.1c)

Obviously the dropping ofζ can occur through absorption into the amplitude field
L in order to generate amodified amplitude field′L2 (= 1

2eζ · L2) as the proper
external variable for the localization properties of the 2-particle system. As a
consequence it should be possible to recast all the 2-particle equations in a form
which contains both the mixture indexσ∗ and the mixture variableζ in addition
to the modified amplitude field′L so that the pure-state form of that equation is
obtained by either puttingσ∗ to zeroor by lettingζ tend to infinity. The remaining
variables′L andξo are then sufficient to describe the pure states.

4.1. Currents

As a first example for this procedure consider both currentsJµ (3.29a) and
jµ (3.29b). Observing here the reparametrizations of the physical densitiesρ , q,
ands in terms of the renormalization factorsZT, ZR, andZO (3.65) actually yields
the desired form of the currents, namely for the total current

Jµ = 1

2

(
ZT

ZII
− 1

)
· h

2Mc
Kµ · ′L2+ J

◦
µ (4.2a)

J
◦
µ = h

2Mc

{
Kµ + cosξo · kµ + 2 sinξo · (‖)Qµ

} · ′L2, (4.2b)

and similarly for the relative current

jµ = 1

2

(
ZT

ZII
− 1

)
· h

2Mc
Kµ · ′L2+ j

◦
µ (4.3a)

j
◦
µ = h

2Mc

{
kµ + cosξo · Kµ + 2 (⊥)Nµ · sinξo

} · ′L2. (4.3b)
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Here we have made use of the modified amplitude field′L(x) which has already
been mentioned in connection with the pure states [(4.1a)–(4.1c)] and whose gen-
eral definition reads

′L =··
√

ZII · L . (4.4)

Indeed this is just the desired result, for the pure-state formsJ
◦
µ (4.2b) and j

◦
µ

(4.3b) are recovered byeitherputting the mixture indexσ∗ to zero in the general
form for Jµ (4.2a) or jµ (4.3a)or by letting the mixture variableζ tend to infinity,
cf. the reparametrizations [(3.62)–(3.66)] for the renormalization factors.

Remarkably, for our special situation (3.71), the pure-state contributionsJ
◦
µ

(4.2b) andj
◦
µ (4.3b) to the complete currentsJµ (4.2a) andjµ (4.3a) are exclusively

built up by the pure-state variables′L andξo but not by the mixture variablesζ
andχ , even if one has a true mixture:

J
◦
µ ⇒ h

2Mc
{Kµ + cosξo · kµ} · ′L2 (4.5a)

j
◦
µ ⇒ h

2Mc
{kµ + cosξo · Kµ} · ′L2. (4.5b)

This peculiarity is expressed even more clearly when we return again to the single-
particle currentsjaµ (3.25a)–(3.26c) which become by means of the present sim-
plification requirement (3.71)

j1µ ⇒ h

Mc
ρ1K1µ (4.6a)

j2µ ⇒ h

Mc
ρ2K2µ. (4.6b)

Obviously the mixture degree of freedom has been hidden here completely behind
the scalar single-particle densitiesρa. In the general mixture case these may be
parametrized by the pure-state variables′L , ξo and by the mixture variableζ in the
following form:

ρ1(x) = gw(x) · (L1(x))2+ gs(x) · (L2(x))2 (4.7a)

ρ2(x) = gw(x) · (L2(x))2+ gs(x) · (L1(x))2. (4.7b)

Here the space–time dependentstructure functions gw andgs are defined in terms
of the renormalization factors as

gw = 1

2

(
ZT

ZII
+ 1

)
(4.8a)

gs = 1

2

(
ZT

ZII
− 1

)
(4.8b)
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and furthermore the single-particle amplitudesLa through

L1 = ′L · cos
ξo

2
(4.9a)

L2 = ′L · sin
ξo

2
. (4.9b)

Thus for the limit case of the pure states (ζ →∞) one has for the structure
functions gw ⇒ 1 and gs⇒ 0, and this then identifies the scalar densitiesρa

(4.7) with the square of the moduli of the single-particle wave functionsψa (3.1).
However, for the more general case of a true mixture, such a 2-component wave
function9 = {ψa}, a = 1, 2 as given in (3.1), is not sufficient to describe the
mixture degree of freedom! (Similar arguments as those holding for the currents
do apply to other physical densities also, e.g. the energy–momentum densityTµν
(Ruppet al., 2000).)

4.2. Gauge Interactions

The mixture degree of freedom becomes physically active via the currents as
the sources of the electromagnetic field which itself is responsible for the gauge
interactions among the particles. Thus, a mixture configuration will generate cer-
tain changes of the pure-state interactions which, e.g., may become manifest as
changes of the energy eigenvalues of bound systems (see as given later). More
concretely, the electromagnetic interactions are constructed in the following way:

In the SPB formalism, Maxwell’s equations read (a = 1, 2)

∇µFaµν = 4πα∗ · ′ jaν , (4.10)

where the curvature componentsFaµν have already been defined by Eq. (2.19b),
the single-particle currents′ jaµ obey the cross-relation (4.13), andα∗ is the elec-
tromagnetic coupling constant (= e2

hc). In order to exclude thedirect particle self-
interactions, the curvature componentsFaµν also obey a cross-relation with respect
to the electromagnetic fields′Faµν generated by the single-particle currentsjaµ:

F1µν = (ex)Fµν + ′F2µν (4.11a)

F2µν = (ex)Fµν + ′F1µν. (4.11b)

By virtue of this construction, any one of both particles feels the external field
(ex)Fµν and the field ′Fbµν of the other particle but not itsown field, i.e. the
Maxwell equations are required to connect the currents and field strengths in the
following way:

∇µ ′Faµν = 4πα∗ · jaν , (4.12)
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where

∇µ (ex)Fµν ≡ 0.

As a consequence, the comparison of both Maxwell equations (4.10) and (4.12)
yields the cross-relation for the currents

′ j1µ ≡ j2µ (4.13a)
′ j2µ ≡ j1µ, (4.13b)

where the proper currentsjaµ on the right are to be identified with the RST currents
defined by Eq. (2.25).

For the present simplified situation (3.71), the source currentsjaµ are speci-
fied by Eqs. (4.6a) and (4.6b) and thus contain the mixture effect exclusively via
the single-particle densitiesρa (4.7). Since the first (second) densityρ1(ρ2) also
contains the second (first) amplitude fieldL2(L1) with the structure functiongs as
a kind of weight factor (relative togw), there ariseself-interactionsfor the mix-
tures in anindirectway. In order to see this in some detail, recall that the Maxwell
equations (4.10) for the curvature componentsFaµν imply the wave equations for
the connection componentsAaµ (2.20):

¤Aaµ = 4πα∗ · ′jaµ. (4.14)

Applying the Lorentz gauge∇µAaµ ≡ 0, the formal solution is given here by

Aaµ(x) = (ex)Aµ(x)+
∫

d4x′ D̃(x − x′) ′ jaµ(x′) (4.15)

with an appropriate Green’s functioñD(x, x′):

¤D̃(x, x′) = δ4(x − x′). (4.16)

(The specification of the Green’s functionD̃(x, x′) will require an extra argument.)
Consequently the gauge potentialsAaµ(x) are also cross-related to the currents

′A2µ ≡ A1µ(x) = (ex)Aµ(x)+ α∗
∫

d4x′ D̃(x, x′) j2µ(x) (4.17a)

′A1µ ≡ A2µ(x) = (ex)Aµ(x)+ α∗
∫

d4x′ D̃(x, x′) j1µ(x). (4.17b)

On the other hand the gauge potentials influence the single-particle wave functions
ψa (3.1) via their covariant derivatives as usual

Dµ9 = ∂µ9 +Aµ9, (4.18)

i.e. in components

Dµψ1 = .=. ∂µψ1− i A1µψ1 (4.19a)

Dµψ2 = .=. ∂µψ2− i A2µψ2. (4.19b)
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Therefore the first (second) amplitude fieldL1(L2) acts back to the first (second)
wave functionψ1(ψ2) by entering the second (first) currentj2µ( j1µ) which itself
generates the first (second) gauge potentialA1µ(A2µ) acting on the first (second)
wave functionψ1(ψ2), i.e. in symbolical and self-evident notation

L1(L2)
gs⇒

(4.6–4.7)
j2µ( j1µ)

D̃⇒
(4.17)

A1µ(A2µ)
Dµ⇒

(4.19)
ψ1(ψ2). (4.20)

Observe here that this kind of self-interaction is not identical to the usual
mechanism in which themutualgauge forces are active. As is well known, the
latter forces are working in such a way that the first (second) amplitude field
L1(L2) enters the first (second) currentj1µ( j2µ), which generates the second (first)
connection componentA2µ(A1µ) acting on the second (first) wave functionψ2(ψ1);
in symbolical notation

L1(L2)
gw⇒

(4.6–4.7)
j1µ( j2µ)

D̃⇒
(4.17)

A2µ(A1µ)
Dµ⇒

(4.19)
ψ2(ψ1). (4.21)

It is important here to remark that in the first step the mutual gauge interac-
tions (4.21) rely upon the structure functiongw(ζ ) (4.8a) whereas the former
self-interactions(4.20) rely upon the structure functiongs(ζ ) (4.8b). Thus the
conventional gauge interactions survive the pure-state limit (gw(ζ →∞)⇒ 1)
whereas the self-interactions do not (gs(ζ →∞)⇒ 0). Through this argument it
becomes obvious that the self-interactions are essentially mediated by the mix-
ture variableζ and thus the peculiarities of this unconventional type of inter-
action will be elucidated by considering the wave equation forζ (see as given
later).

One must concede that the description of mixtures in terms of vector poten-
tials Aaµ and single-particle wave functionsψa may appear somewhat artificial
and uneffective. A formalism more manageable than this (ψ, A)-formalism is the
(L , K )-formalism, which relies upon the use of the localization (amplitude) and
kinetic fields in place of wave functions and vector potentials. The unconventional
self-interaction chain (4.20) reads then in the (L , K )-formalism

L1(L2)
gs⇒

(4.6–4.7)
j2µ( j1µ)

α D̃⇒
(4.25)

K1µ(K2µ)
¤⇒

(4.31)
L1(L2). (4.22)

whereas the conventional gauge interaction (4.21) is transcribed as

L1(L2)
gw⇒

(4.6–4.7)
j1µ( j2µ)

α D̃⇒
(4.25)

K2µ(K1µ)
¤⇒

(4.31)
L2(L1). (4.23)

The first step, leading from the amplitudesLa to the currentsjaµ, is the same
as in the (ψ, A)-formalism [(4.20) and (4.21)] and runs via Eqs. (4.6) and (4.7),
but the second and third steps (symbolized byα D̃ and the d’Alambertian¤)
require some explanation. Here, the third step (¤) refers to the wave equations
for the amplitude fieldsLa, which contain the kinetic fieldsKaµ and shall be
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presented at length subsequently; but the second step (α D̃) is only a minor mod-
ification of the inversion process (4.17), namely by resorting to the kinetic fields
Kaµ in place of the vector potentialsAaµ, and it can be elucidated by the following
argument:

Both the connection componentsAaµ and the kinetic fieldsKaµ have the cur-
vature componentsFaµν as their curl, cf. (2.20), together with the SPB formulation
of the integrability conditions (2.6) for the kinetic fields reading

∇µKaν −∇νKaµ = Faµν. (4.24)

Therefore both vector fieldsAaµ and Kaµ may differ at most by some gradient
field (∂µα)

Kaµ = ∂µαa + Aaµ. (4.25)

Thus the relationship (̃D) between the currents and the vector potentials (4.17) is
also transferred to the kinetic fields, apart from the additional emergence of the
scalar fieldsαa(x). The latter are necessary in order to guarantee the homogeneous
transformation behavior (here invariance) of the kinetic fields under a change of
gauge (parametrized by theU (1)×U (1) group parametersab(x), b = 1, 2)

Kaµ ⇒ K ′aµ ≡ Kaµ (4.26)

whereas the gauge potentialsAaµ and scalar fieldsαa transforminhomogeneously

Abµ ⇒ ′Abµ − ∂µab (4.27a)

α′b(x)⇒ αb(x)+ ab(x). (4.27b)

(see the reconstruction of the wave functionψ from the variables of the (L , K )-
formalism in Mattes and Sorg (1999a). These new scalar fieldsαa(x) stand in close
relation to the mass eigenvalues (Ma) which will be further elucidated later.

The final step (¤) of the interaction chains (4.22) and (4.23) now consists in
specifying the wave equations for the amplitude fieldsLa, which will then clearly
display the coupling between the kinetic and amplitude fields.

4.3. Wave Equations

Up to now we have been mainly concerned with the kinematical setting whose
internal consistency has been found to be guaranteed by the integrability condition
(2.6). The dynamical equations, as the complementing building block of RST,
must now be considered. The starting point here is the conservation equation (2.7)
which can be transcribed to the corresponding wave equations for the scalar fields
introduced earlier: amplitude field′L(x) (4.4), overlap angleξo (3.61)–(3.65), and
the mixture variablesζ andχ (3.70). Remember here that in place of the pure-state
variables′L andξo one could also resort to the single-particle amplitudesLa (4.9).
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Transcribing the former amplitude equation forL(x) (3.55) to the new variable
′L(x) (4.4) yields

¤′L + ′L ·
{(

Mc

h

)2

− 1

4
[KµKµ + kµkµ + ∂µξo · ∂µξo] − 1

2

ZT

ZII
cosξo(Kµkµ)

}
= σ∗

4ZII
2 (gµgµ − hµhµ). (4.28)

Similarly the wave equation for the overlap angleξo is deduced from the conserva-
tion equation for(⊥)Qµ (3.58b) via the first derivative ofξo (3.68b) as the following
modified form of the well-knownSine–Gordon equation(Doddet al., 1982)

¤ξo+ ′Lµ · ∂µξo+ ZT

ZII
sinξo(Kµkµ) = − σ∗

ZII
2 gµhµ. (4.29)

Here the use of a modified localization field′Lµ is due to the transition from the
amplitudeL(x) to ′L(x) (4.4), i.e.

′Lµ .=. ∂µ
′L2

′L2
= Lµ + ZT

ZII
hµ. (4.30)

Observe again that the pure state forms of both wave equations (4.28) and (4.29)
can be obtained in a twofold way, namelyeitherby directly putting the mixture
indexσ∗ to zeroor by lettingζ tend to infinity for nonzero mixture index.

Alternatively, one might prefer to work with the single-particle amplitudes
La (4.9) in place of the “external” amplitude field′L(x) and overlap angleξo. The
corresponding amplitude equations forLa are easily deduced from the present
system [(4.28) and (4.29)] and read (a = 1, 2)

¤La + La ·
{(

Mc

h

)2

− KaµKµ
a

}
= −Wb

a Lb (4.31)

(summation of indices in opposite positions). The coupling matrix elements{Wab}
are found here to be of the following form:

W11 = −σ∗ gµgµ − hµhµ
(2ZII )2

− gs
(
K1µKµ

1 − K2µKµ

2

)
(4.32a)

W22 = −σ∗ gµgµ − hµhµ
(2ZII )2

+ gs
(
K1µKµ

1 − K2µKµ

2

)
(4.32b)

W12 = −σ∗ gµhµ
2Z2

II

= −W21. (4.32c)

The present amplitude equations (4.31) have some interesting properties. First
observe that they contain the kinetic fieldsKaµ and thus the influence of the kinetic
fields upon the amplitudesLa is now clearly demonstrated (see the last step (¤)
for the gauge interaction schemes (4.22) and (4.23)). Second, the limit process
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ζ →∞ lets the coupling elements vanish (Wab→ 0) and consequently we are
left with two homogeneous amplitude equations

¤La + La ·
{(

Mc

h

)2

− KaµKµ
a

}
= 0, (4.33)

which describe a pure state (σ∗ = 0). For this special case, the coupling between
the two amplitude fieldsL1 andL2 occurs exclusively via the gauge interaction
mechanism (4.23). Returning from the present (L , K )-formalism to the (ψ, A)-
formalism, one can reconstruct the componentsψa of the two-particle wave func-
tion 9 (3.1) and the single-particle wave functionsψa will then obey ordinary
KGEs (see Mattes and Sorg, 1999a). However for true mixtures (i.e.σ∗ 6= 0 and
0 < ζ < ∞) both matter degrees of freedom receive an additionalnongaugecou-
pling by virtue of the matrix elementsWab which are governed, besides by the
kinetic fields, essentially by the mixture variableζ . Thus the dynamical features
of this scalar fieldζ (x) will determine the corresponding physical properties of
the mixture interaction. Especially if one could find some wave equation forζ

one would assume that the mixture interactions also propagate with the (local)
velocity of light just as is the case with the gauge interactions based upon the wave
equations (4.14) for the vector potentialsAaµ.

Indeed, such a wave equation forζ can easily be deduced from the source
equation for the vector fieldhµ (3.67b). Remember here that this vectorhµ has
already been revealed as the gradient field of the scalarζ , cf. (3.68a), and thus the
source equation forhµ (to be deduced from the source equations for(‖)Nµ (3.58c)
and forlµ (3.56)) is nothing else than the desired wave equation forζ :

¤ζ + ′Lµ · ∂µζ − ZT

ZII
∂µζ · ∂µζ = ZII∂

µχ · ∂µξo+ cosξo · Kµkµ. (4.34)

Obviously, the mixture variableζ couples also to the other scalar variableχ so
that we have to supply the wave equation for the latter variableχ in order to close
the dynamical system. This wave equation is obtained in a similar way from the
source equation for the other vector fieldgµ which is related to the scalarχ by
the former gradient condition (3.70). Thus one finds forχ the following wave
equation:

¤χ +
(
′Lµ + ZT

ZII
∂µζ

)
· ∂µχ = − 1

ZII
sinξo · (Kµkµ)

− 1

ZII
hµ · (∂µξo− ZT∂µχ ). (4.35)

The four wave equations (4.31), (4.34), and (4.35) are valid for that simplified
situation defined by the requirement (3.71) for vanishing exchange fieldsGµ,
(⊥)Nµ, (‖) Qµ but nonzero exchange fieldslµ and(‖)Nµ. Obviously there can be no
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hope to get an exact solution to such a highly non-linear and intricately coupled
system. But fortunately the situation can be further simplified by neglection of the
two remaining exchange fields(⊥)Qµ and(‖)Nµ. We shall readily see that, by this
assumption, the mixture interaction becomes “local” (i.e. some kind of “overlap
force” arises).

4.4. Vanishing Exchange Fields

It is not only for the sake of simplicity but it also provides us with a better
understanding of the relationships between the exchange effects and mixture phe-
nomena when we completely neglect the exchange fields (i.e.(⊥)Qµ = (‖)Nµ ≡ 0)
but retain the mixture character of the system (i.e.σ∗ = ±1). In order to clearly see
the specific kind of simplification which is produced by this neglection, write down
both the exchange fields in terms of the mixture variablesζ andχ , cf. (3.68b),
together with (3.70)

(⊥)Qµ ≡ 1

2
(∂µξ − ZT∂µχ ) =! 0 (4.36)

and

(‖)Nµ ≡ 1

2
(cosξo · ZII · ∂µχ + sinξo · ∂µζ ) =! 0. (4.37)

This system can be understood as a first integral of the wave equations forζ (4.34)
andχ (4.35) (Hint: check this by differentiating once more the system [(4.36) and
(4.37)] and using the wave equations forζ, χ , andξo).

The point with the vanishing of all the exchange fields is now that the system
[(4.36) and (4.37)] admits a formal solution, namely

cosξo =
{√

1+ C2∗ · cos (χ − χ∗), σ∗ = +1

−√C2∗ − 1 · sinh (χ − χ∗), σ∗ = −1
(4.38a)

ZII (ζ ) = C∗
sinξo

. (4.38b)

This solution establishes a rigid link between the mixture variablesζ, χ and the
pure-state variableξo. Since the latter quantity is related to the single-particle
amplitudesLa via (cf. (4.9a) and (4.9b))

sinξo = 2
L1L2

L2
1+ L2

2

(4.39a)

cosξo = L2
1− L2

2

L2
1+ L2

2

, (4.39b)
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one can actually express the mixture variablesζ andχ through the single-particle
amplitudesLa. Thus what remains to be done is simply to eliminate the mixture
variableζ from the coupling matrixWab [(4.31) and (4.32)] by means of the
relationships (4.38a) and (4.38b) via

gµhµ
2Z2

II

= −L1L2
L2

1− L2
2(

L2
1+ L2

2

)2 · (L1∂µL2− L2∂µL1)(L1∂
µL2− L2∂

µL1)

σ∗L2
1 L2

2+ (C∗/2)2
(
L2

1+ L2
2

)2
(4.40a)

gµgµ − hµhµ
(2ZII )2

= 4L2
1L2

2−
(
L2

1− L2
2

)2(
L2

1+ L2
2

)2 · (L1∂µL2− L2∂µL1)(L1∂
µL2− L2∂

µL1)

4σ∗L2
1 L2

2+ C2∗
(
L2

1+ L2
2

)2 (4.40b)

Observe also that the structure functiongs in front of the kinetic fields (4.32a) and
(4.32b) within the coupling matrixWab can be expressed in terms of the amplitude
fields as

Z2
T

Z2
II

= 1+ σ∗
(

2

C∗

)2( L1L2

L2
1+ L2

2

)2

≡ 1+ σ∗ sin2 ξo

C2∗
. (4.41)

In this way, we actually see that the amplitude system (4.31) contains only
pure-state variables where the nonlinearity induced by the coupling matrixWab

is caused by the mixture effect. The latter may be parametrized by themixing
parameter C∗ (4.38) so that forC∗ → ∞ the mixture system (4.31) tends again
to the pure-state case (4.33). If the same elimination procedure of the mixture
variableζ in favor of the amplitude fieldsLa is carried through for the single-
particle densitiesρa (4.7), one gets these densities as exclusive functions of the
amplitude fields. This result comes about via the structure functionsgw (4.8a)
and gs (4.8b) which both become functions of the amplitudesLa by means of
the link (4.41) between the renormalization factors and these amplitudes. The fact
that any one of both densitiesρa (a = 1, 2) is determined simultaneously by both
amplitude fields may be considered as a kind offluid-dynamical entanglement
because a clear association of any one of the conserved currentsjaµ (a = 1, 2) to
a definite amplitude fieldLa is no longer possible for the mixtures.

Clearly the fortunate emergence of such a nice parameterC∗, admitting the
continuous transition from mixtures to pure states, can be exploited in order to
establish a perturbation expansion (in powers ofC−n

∗ ) of the mixture results (C∗ <
∞) around the pure-state results (C∗ = ∞). However in order to get a qualitative
picture of what happens for small enough values ofC∗, far from the pure-state
limit (C∗ → ∞), we cannot apply such an expansion but rather have to deal with
the exact analytic expressions with respect to the mixing parameter.
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5. PERTURBATIVE APPROACH

An approximative treatment of two-particle systems is possible in two ways:
first, one can consider the electromagnetic interactions between the two particles
(e.g. being trapped in an “external” force field) as a perturbation just as is done
in conventional quantum mechanics. The unperturbed situation then refers to the
presence of two noninteracting particles in the same external force field and thus
would lead us to two bound single-particle states in the same external field as
the point of departure for a perturbation expansion. Second, one may consider
the mixture effects as a perturbation of the pure-state situation. Since the mixing
parameterC∗, introduced through Eq. (4.38b) for the special case of vanishing
exchange fields, admits to switch on and off the mixture effect continuously (C∗ →
∞: pure states) one may think here of a perturbation expansion in terms of powers
of C∗. In contrast to this the perturbation expansion with respect to the interparticle
interactions would be based upon the electromagnetic coupling constantα∗ (=·· e2

hc).
Subsequently we shall treat both perturbative aspects on the same footing and will
consider only the first-order approximation.

5.1. Single-Particle Concepts vs. Center-of-Mass Approach

The perturbative treatment of the electrostatic fields of the two particles will
be considerably facilitated by our simplification assumptions (3.71). The reason is
that the exchange field strengthGµν (3.43) must necessarily vanish whenever the
generating exchange potentialGµ is zero. Thus the general curl relation for the
relative kinetic fieldkµ (3.36b) reads simply

∇µkν −∇νkµ = 2 fµν (5.1)

and the modified field′kµ (3.45) can be identified with the originalkµ.
As a consequence, the SPB version of the EPB curl relation [(3.36a) and

(3.36b)] could be simplified as shown in Eq. (4.24), where the properties of the
SPB curvature componentsFaµν have already been described through Eqs. (4.11)–
(4.13). According to that construction, any curvature componentFaµν (a = 1, 2)
is the sum of the external field(ex)Fµν and the single-particle field′Fbµν being
generated by theotherparticle. Thus the external field(ex)Fµν , being felt by any
one of both particles, appears to be “averted” by the field′Fbµν of the other particle.
Similarly the total kinetic fieldKµ, feeling twice the mean field̂Fµν (3.36a), sees
the double external field(ex)Fµν being averted through the sum of both single-
particle fields

∇µKν −∇νKµ = 2F̂µν = 2(ex)Fµν − (′F1µν + ′F2µν). (5.2)

More concretely, if the external field(ex)Fµν is due to a static point charge
carryingzex charge units, then the totalKµ sees the double charge number (2· zex)
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being screened by two charge units (2= z1+ z2). This is very plausible because
the total fieldKµ describes theexternal(i.e. center-of-mass) motion of the two-
particle system, whereas the relative fieldkµ rather refers to itsinternal degrees
of freedom. The residual effect of the internal motion upon the external motion
is then described by the sum of the single-particle fields on the right-hand side of
Eq. (5.2). On the other hand, the external field(ex)Fµν has no direct influence upon
the internal motion as may be seen from the curl relation (5.1), with the internal
field strengthfµν (3.14d) being independent of the external(ex)Fµν :

fµν =··
1

2
(F1µν − F2µν) = −1

2
(′F1µν − ′F2µν). (5.3)

Thus there arise two possibilities for establishing a perturbation theory:
(i) either one tries to solve the external problem alone (neglecting the internal
degrees of freedom) and then one considers the internal motion as a perturbation
or (ii) one tries to first solve both single-particle problems in the external field
alone, cf. (4.33), and afterwards one considers the single-particle interactionsWab

(4.31) as a perturbation.
Subsequently we will carry through the second proposal based upon the

single-particle concepts.

5.2. Perturbation Expansion

As usual in the conventional perturbation theory, one considers the field ob-
jects as a sum of individual terms whose magnitudes are decaying from order to
order, i.e. we put for the amplitude fields

La(x) = (0)La(x)+ (1)La(x)+ (2)La(x)+ · · · (5.4)

and similarly for the kinetic fields

Ka(x) = (0)Ka(x)+ (1)Ka(x)+ (2)Ka(x)+ · · · . (5.5)

Substituting the amplitude exapansions (5.4) into the corresponding field equations
(4.31), one just finds for the lowest-order approximation(0)La(x) the disentangled
situation (4.33). i.e.

¤(0)La + (0)La

{(
Mc

h

)2

− (0)Kaµ · (0)Kµ
a

}
= 0. (5.6)

Furthermore it is assumed that the kinetic field does not feel the interparticle forces
but only the external force, i.e. one puts in lowest order (cf. (4.25))

(0)Kaµ = ∂µ(0)αa + (ex)Aµ. (5.7)
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More concretely, for a static and spherically symmetric field configuration
one puts (Ruppet al., 2000)

(ex)Aµ = Aex(r ) · t̂µ, (5.8)

wherer denotes the radial coordinate andt̂µ (=·· ∂µx0) is a unit vector pointing into
the time direction (̂tµ t̂µ = +1). For instance, for the Coulomb potential withzex

charge units placed in the origin (atr = 0) one has

Aex(r ) = zex
α∗
r
. (5.9)

Next, it should be evident that for such a symmetric situation the phase angles
αa(x) (4.27b) can only depend upon the time coordinate (x0) in the following
form:

(0)αa(x) = Mac

h
· x0, (5.10)

where the integration constantsMa are themass eigenvaluesof the (bound) par-
ticles. As a consequence of these symmetry requirements, the zero-order kinetic
fields(0)Kaµ (=·· (0)Ka(r ) · t̂µ) are found to be of the following form

(0)Ka(r ) =
(0)Ma · c

h
+ zex

α∗
r

, (5.11)

where(0)Ma are the zero-order mass eigenvalues. For such a simple situation, the
static form of the amplitude equations (5.6) reads

−1(0)La + (0)La

{(
Mc

h

)2

− ((0)Ka
)2} = 0 (5.12)

and admits the well-known energy eigenfunctions(0)Ln(r ) of the relativistic (scalar)
hydrogen atom

(0)La(r ) = L̂ ·
√

z3
ex

πa3
B

· La(y). (5.13)

The eigenfunctionsLn(y) are well known and may be looked up in any textbook
about relativistic quantum mechanics (e.g., Messiah, 1965). Moreover,L̂ is some
normalization constant which is unity for the pure states (σ∗ = 0: L̂ ⇒ 1) but in
general depends upon the mixing parameterC∗, andaB (=·· h2

Me2 ) is the Bohr radius.
Since our present endeavors aim at the mixture effects but not at the rela-

tivistic corrections, we can be satisfied with the nonrelativistic approximation to
the eigenfunctionsLn(y) which then become, e.g., for the single-particle ground
state (1s)

L1(y) = exp(−y), (5.14)
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or for the first excited state (2s)

L2(y) = 1√
8
·
(

1− y

2

)
exp

(
− y

2

)
. (5.15)

Correspondingly, the mass eigenvalues(0)Ma are also known exactly but for the
present nonrelativistic limit we may be satisfied with working with the nonrela-
tivistic binding energies(0)EB,a in lowest order

(0)EB,1 =
(
M − (0)M1

) · c2 ∼= 1

2
z2

ex
e2

aB
(5.16a)

(0)EB,2 =
(
M − (0)M2

) · c2 ∼= 1

8
z2

ex
e2

aB
. (5.16b)

5.3. Density Deformations

The present zero-order results are already sufficient in order to demonstrate
certain RST peculiarities concerning the scalar densitiesρa (4.7). The physical
relevance of these densities originates from the fact that they essentially de-
termine the interaction potentials′Aaµ (4.17) via the currentsjaµ (4.6). Indeed
one can easily show that in the first-order approximation these potentials′Aaµ

(⇒ ′Aa(r ) · t̂µ) can be written down in terms of the scalar densities as (Ruppet al.,
2000)

′A(1)
a (r ) = α∗

∫
dV′

(0)ρa(Er ′)
|Er − Er ′| . (5.17)

Here the zero-order densities(0)ρa are obtained by introducing the zero-order
amplitudes(0)La (5.13) into the defining equations (4.7). The resulting single-
particle potentials′A(1)

a (5.17) are then considered as first-order objects entering
the first-order corrections(1)Ka of the kinetic fields (5.5) as follows:

(1)K1(r ) =
(1)M1c

h
− ′A(1)

2 (r ) (5.18a)

(1)K2(r ) =
(1)M2c

h
− ′A(1)

1 (r ). (5.18b)

Since the kinetic fields are acting back upon the amplitudesLa according to the
last step (¤) of the interaction schemes (4.22) and (4.23), the influence of the
densities(0)ρa upon the first-order mass corrections(1)Ma is evident. Observe
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here that these mass corrections themselves may be computed from the first-order
amplitude equations

−1(1)La + (1)La

{(
Mc

h

)2

− ((0)
Ka
)2} = 2(0)La

(
(0)Ka · (1)Ka

)− (1)Wb
a · (1)Lb

(5.19)

which neccessarily must contain the first-order kinetic fields(1)Ka (5.18). (The
first-order mixture coupling elements(1)Wab are obtained by introducing the zero-
order amplitudes(0)La into their defining equations (4.32) with observation of the
scalar products (4.40).)

Now that the role of the densities(0)ρa has become clear, the interesting point
with these densities refers to their deformation when the mixing parameterC∗
varies from infinity (; pure states) up to its minimal possible value which is
C− = 1 for the negative mixtures (σ∗ = −1) andC+ = 0 for the positive mixtures
(σ∗ = +1); see Fig. 3. For the pure states (C∗ = ∞), the densities(0)ρa (4.7)
coincide with the squares ((0)La)2 of the amplitudes because here the structure
functiongw (4.8a) is identical to unity andgs (4.8b) vanishes. But with decreasing
mixing parameterC∗ the densities are deformed considerably away from their
original amplitude shape and this deformation occurs for the two types of mixtures
(σ∗ = ±1) in a rather different way:

(i) For thepositivemixtures (σ∗ = +1), both densities tend to become iden-
tical and arrive at the complete identity ((0)ρ1 ≡ (0)ρ2) for the minimal
possible valueC+ = 0 (; charge fusion);

(ii) However for thenegativemixtures (σ∗ = −1), both densities tend to
recede from each other and thus try to occupy non-overlapping regions
in three-space such that the completecharge separationis achieved for
the minimal possible valueC− = 1 of the mixing parameterC∗.

Clearly, such a dichotomy of the behavior of the RST matter strongly reminds
one of the corresponding boson–fermion dichotomy of matter in the conventional
quantum theory. There the well-known Pauli exclusion principle says (among
other things) that fermionic single-particle wave functions are reluctant to occupy
the same region of three-space whereas the wave functions of bosonic particles
even tend to fuse into a single one (as, e.g., during the process of Bose–Einstein
condensation). Such a dichotomic behavior of matter must necessarily lead to ex-
perimental consequences, namely concerning the energy levels available for any
type of matter bound by an attractive force. Here one would like to think that
the fermionic matter occupies a lower energy level in comparison to the bosonic
case because the charge separation (classically spoken) lowers the electrostatic
interaction energy of the fermions whereas the charge fusion is expected to in-
crease the interaction energy of the bosons. Indeed this expectation is realized
in the conventional quantum theory (see Section 1) but it is also true in RST
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as can readily be demonstrated for the present two-particle situation described
previously.

5.4. Two-Particle Interaction Energy

Suppose the present two-particle mass-eigenvalue problem (4.31) for the
Coulomb potentialAex(r ) (5.9) admits an exact solution. In this ideal situation, the
perturbation expansion for the kinetic fields (5.5) would converge to the exact form

K1(r ) = M1c

h
+ Aex(r )− ′A2(r ) (5.20a)

K2(r ) = M2c

h
+ Aex(r )− ′A1(r ) (5.20b)

and thus both mass eigenvaluesMa would be known exactly. Also known exactly
are the zero-order values(0)Ma which apply for the situation when the interparticle
interactions (of both electromagnetic and mixture type) are switched-off, i.e. for
′Aa ≡ 0 andC∗ → ∞. The exact total massM12 of the 2-particle system with
switched-on interactions could then be defined as

M12 = 1

2

{
(0)M1+ M1+ (0)M2+ M2

}
. (5.21)

This appears to be a plausible proposition becauseM12 reduces to the sum of
the individual mass eigenvalues(0)Ma when the interactions are switched-off and
thus Ma ⇒ (0)Ma. Furthermore the interaction energy (M12− (0)M1− (0)M2) is
partitioned to both matter modes according to the scheme

M12−
{

(0)M1+ (0)M2
} = 1

2

(
M1− (0)M1

)+ 1

2

(
M2− (0)M2

)
, (5.22)

i.e. both matter degrees of freedom contribute with the same weight (1
2).

In the first-order approximation one concludes from this for the total mass
correction(1)M12 produced by the 2-particle interactions

(1)M12 = 1

2

{
(1)M1+ (1)M2

}
, (5.23)

where the individual mass corrections(1)Ma can be computed by means of the
first-order amplitude equations (5.19) applying standard methods of perturbation
theory (Ruppet al., 2000). The result for the interaction energy(1)E12 = (1)M12 · c2

is plotted in Fig. 1 which demonstrates some interesting features (for the technical
details, see Ruppet al., 2000):

(i) ForC∗ → ∞ (pure states) the mixture coupling vanishes (i.e.Wab⇒ 0)
and we are left with two disentangled particles. These are described by
the decoupled amplitude system (4.33) and are subject exclusively to
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the electrostatic gauge interactions, as it is symbolized by the interac-
tion scheme (4.23) for the limit caseC∗ ⇒ ∞. Therefore one expects
the interaction energy(1)E12 to be identical with the classical electro-
static interaction energy (UC) of the two charge clouds produced by the
(normalized) single-particle amplitudes(0)La(Er ):

UC = e2
∫

dV
∫

dV′
(

(0)L1(Er )
)2 · ((0)L2(Er ′))2
|Er − Er ′| . (5.24)

For the (1s, 2s)-configuration (5.13)–(5.16) one finds (either in the lit-
erature (Grau, 1993) or by explicit calculation)

UC(1s, 2s) = 17

81
zex

e2

aB
≈ 5.711· zex [eV]. (5.25)

As shown by Fig. 1, this limit requirement is actually reproduced by
our perturbative approach which therefore is reliable with respect to the
gauge interactions.

(ii) Now switching-on the mixture interactions means decreasing the value
of the mixing parameterC∗ from infinity to finite values (C∗ < ∞). As
the numerical results demonstrate (Fig. 1), the interaction energy(1)E12

decreases with decreasingC∗ and thus tends toward the experimental
values for the symmetric (S) and antisymmetric (A) 2-particle config-
urations. In this sense, the RST perturbation results come closer to the
experimental values than the first-order predictions (UC± EG) of con-
ventional quantum theory (cf. Section 1). Observe also that for identical
values of the mixing parameterC∗, the interaction energy for the positive
mixtures (σ∗ = +1) is greater than for the negative mixtures (σ∗ = −1).
This supports the hypothesis of attributing the negative (positive) RST
mixtures to fermionic (bosonic) matter.

(iii) A certain problem arises for the present first-order perturbation result of
RST when the mixing parameterC∗ approaches its minimal valueC±
(negative mixtures:C∗ → C− = 1; positive mixtures:C∗ → C+ = 0).
In both cases, the interaction energy(1)E12 becomes infinite ((1)E12→
−∞). Clearly, this signals a breakdown of the first-order approximation.
Since the exact solution is not known, it is presently unclear what really
happens whenC∗ approaches its minimally possible valuesC±. Observe,
however, that for the present first-order approximation one can fix the
mixing parameterC∗ in such a way (C∗ ⇒ C(±)

∗ ) that the present first-
order result exactly agrees with the experimental values (albeit the latter
refer tospinningelectrons whereas we are satisfied with the treatment
of scalar charged particles).

(iv) As is suggested by the numerical results of Fig. 3, there should exist
a kind ofasymptotic mixture degeneracyin the sense that not only for
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the pure states themselves (C∗ = ∞) but also in the vicinity of the pure
states (C∗ → ∞) the energy eigenvalues(1)E12 of positive (σ∗ = +1)
and negative (σ∗ = −1) mixtures become identical! This obvious sug-
gestion will be clarified by an analytic computation for that asymptotic
region (see a separate paper, by Rupp and Sorg, 2000). Such a mixture
degeneracy represents the RST analog of the conventional exchange de-
generacy, cf. the corresponding remarks in connection with Eqs. (1.2a)
and (1.2b).

REFERENCES

Blochincev, D. I. (1964).Quantum Mechanics, Dordrecht, Reidel.
Dodd, R. K., Eilbeck, J. C., Gibbon, J. D., and Morris, H. C. (1982).Solitons and Nonlinear Wave

Equations, Academic Press, New York.
Drake, G. W. F. (1996).Handbook of Atomic, Molecular and Optical Physics, AIP.
Duck, J. and Sudarshan, E. C. (1998).Pauli and the Spin-Statistics Theorem, World Scientific,

Singapore.
Einstein, A., Lorentz, H. A., and Minkowski, H. (1924).Principle of Relativity, Dover, New York.
Einstein, A., Podolsky, B., and Rosen, N. (1935).Physical Review47, 777.
Giulini, D., Joos, E., Kupsch, J., Kiefer, C., Stamatescu, I. O., and Zeh, H. D. (1996).Decoherence

and the Appearance of a Classical World in Quantum Theory, Springer, Berlin.
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