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Positive and Negative Mixtures in Relativistic
Schrédinger Theory

S. Rupp>? and M. Sorg*

The general formalism of relativistic Sadinger theory (RST) is specialized to a scalar
two-particle system with electromagnetic interactions (scalar helium atom). The set of
dynamically allowed field configurations splits up into positive and negative mixtures
and pure states. The static and spherically symmetric solutions are constructed by means
of first-order perturbation theory for the case of an attractive Coulomb potential. The
corresponding energy levels for the positive and negative mixtures resemble the emer-
gence of ortho and para states in the conventional quantum theory. The associated
energy eigenvalues predicted by the RST seem to undergo a certain kinidtafe
degeneracys the RST analog of the conventiomakchange degeneracyhe charge
densities of the positive mixtures assimilate, whereas the densities of the negative mix-
tures recede from one another. Thus, positive (negative) mixtures strongly resemble
the bosonic (fermionic) matter of the conventional theory when the Pauli principle is
applied.

1. INTRODUCTION AND SURVEY

Perhaps the most important and powerful notion in theoretical physics, be-
ing set up for the purposes of understanding the physical phenomena, is the
“conservation law This concept emerges in both classical and quantum physics
with comparable significance, and therefore any conserved quantity surely repre-
sents someélement of reality(in the sense of Einsteiat al., 1935). But despite
their profound meaning, the conservation laws are not understood completely be-
cause their true origin appears to be mysterious. At best, the conservation laws
may be traced back to some physicatihciple.” Mostly such a principle is first
grasped intuitively by its discoverer and is afterwards recast in mathematical terms
in order to be verified (or falsified) by means of appropriate experiments and
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observations. In the history of science, famous examples of this kind refer to the
following:

e Relativity Principle(Einsteinet al, 1924), which inspired the development
of special relativity {» conservation of total four-momentum of closed
systems),

e Equivalence Principle(Einstein et al., 1924; Stachel, 1987), underly-
ing Einstein’s gravitation ~- local energy—momentum conservation
VT, = 0),

¢ Heisenberg'©Quantization PrinciplegHeisenberg, 1930), where the con-
served quantities are deduced from the Heisenberg equations of motion.

1.1. Pauli Principle

This paper deals with some questions centered around one of those funda-
mental principles, thePauli principlé’ (mostly, Pauli exclusion principle, e.g.
Duck and Sudarshan, 1998). Originally the Pauli principle was set up in the form
of an exclusion postulate so as to explain the spectral lines and the internal struc-
ture of atoms and molecules: any electronic quantum state defined in terms of
single-particle quantum numbers can be occupied by only one electron so that no
two electrons can have identical quantum numbers. More generally speaking, one
might nowadays look upon the Pauli principle as the postulate of a fundamen-
tal dichotomy: elementary matter exists in two distinct forms, narfaignions
(obeying the original exclusion principle) abdsons The latter do not only dis-
regard the exclusion postulate but, on the contrary, even tend (if not disturbed by
thermal excitations) to crowd into one single-particle quantum statd¢se—
Einstein condensationThe associated conservation law for this boson—fermion
dichotomy of matter says that any particle must be either of the fermionic type or
of the bosonic type, with exclusion of mixed types and of transitions between the
two types. Recent experimental tests of this superselection rule yield the result that
it is strictly obeyed: non-Pauli processes can only occur with a frequency less than
1 part in 16* (Sudbery, 1990). Thus the boson—fermion conservation law stands
on a comparably fundamental level as the energy—momentum conservation law
(and its violation can therefore hardly be used to solve certain puzzles of contem-
porary physics, e.g. the solar-neutrino problem by means of non-Paulian burning
of hydrogen (Plaga, 1989).

However from the purely theoretical point of view, a rigorous foundation of
the Pauli principle presents some problems. Itis possible to conceive a more general
form of quantum theory @araguantization(Ohnuki and Kamefuchi, 1982)), and
within this general framework the original Pauli principle represents only a very
special subcase. It seems not clear why para-bosons and para-fermions do not exist
in nature. One merely may suppose that the validity of the ordinary Pauli principle
might have to do something with the fact that our space—time Ha8 dimensions,
for in a 14 2 dimensional space—time a graded transition between the two types
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of matter is possible (see the theory of “anyons” in connection with the fractional
guantum Hall effect (Wilczek, 1990)). Such an unclarified theoretical situation with
the Pauli principle may facilitate to consider also alternative forms of the matter
dichotomy, e.g. as it emerges in the relativistic ®climger theory (RST) (Sorg,
1992, 1997a,b). For a comparison of both alternative approaches to the matter
dichotomy, it is instructive to consider some concrete physical situation where the
predictions can be directly opposed to one another: the two-electron atoms.

1.2. Ortho and Para States

In principle, one tests the Pauli claim by confining some particles to a bounded
region of three-space (e.g. two electrons around the nucleus of a helium atom) and
looks at their energy distribution. Thexactenergy level schemiE,} as solution
of the Schodinger eigenvalue problem

Hw2%a2 = En¥ao (1.1)

is not obtainable in most cases, but in order to obtain the degirglitativeenergy
distribution one may be satisfied to know the levels approximately by means of
perturbation theory. Furthermore, neglecting the spin interactions, the electronic
wave functions factorize in a spatial part and a spin part so that the spatial part alone
may be either symmetric or antisymmetric. Thus, for the spinless approximation
one tries the following entangled single-particle states for the spatial part of the
wave function (Blochincev, 1964):

Sy (1, F2) = %(w. 72) - vu () + i (F) - v 7)) (1.2a)

By, 7o) = %(I/ﬂ (F1) - Y (F2) — Y (T2) - Y (Fa)), (1.2b)

which are exact solutions of the two-particle Sutiriger equation (1.1) when the
electronic interaction#l int (#m%) are switched-off{» exchange degeneracy

The standard procedure of %irst-order perturbation theory then yields for the
energy correction$)E, of the unperturbed two-particle states (1.2) as a conse-

guence of the electronic interactions
WE;, = Ue + Eg. (1.3)

Here the positive (negative) sign corresponds to the symmetrized (antisymme-
trized) trial functions (1.2). Consequently, the first-order energy levesd 6f

the helium atom are found to be split up into the well-known parahelium (A) and
orthohelium (S) states, thus eliminating the exchange degeneracy:

12Eg s = —OFg ; — OF , + Uc + Eg (1.4a)
@2Eg ) = —OFz,; — OFg, 4+ Uc — Eg. (1.4b)
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Here the exact single-particle binding energies have been denot@&py(a =

1, 2); they build up the zero-order approximation of the exact result. Moreover,
the “Coulomb integrdl Uc is due to the classical electrostatic interaction energy
of the single-particle charge distributiops(=|v/|%) and oy (=|v %), i.e.

Uc = e2/dV1dV2 Ay - pufa), (1.5)
[F1— 2|

and finally the txchange integralEg (being responsible for the splitting into the
para and ortho states) is given by

Eo— eZ/dvldVZ Y)Y (F) ¥y (F2) v (Fz)' (1.6)

[Fy — Fal

The numerical coincidence of the first-order approximations (1.4) with the
experimental numbers is bad: for instance, for the energy difference of ortho and
para states associated with thednd 2 single-particle states one finds in the
conventional first-order approximation (Grau, 1993)

W2Eg g — 12Eg o = 2Eg = 2.38 eV .7

whereas the experimental value is only 0.8 eV (see Martin, 1883, 1987). Never-
theless the predicted qualitative splitting of the helium levels into the ortho and
para sublevels is found to be actually realized in nature and this (together with a lot
of similar effects in atomic and molecular physics) is generally believed to be an
experimental verification of the (ordinary) Pauli principle. Clearly, the numerical
coincidences of the corresponding theoretical and experimental values may be fur-
ther improved by applying more subtle approximation techniques (Drake, 1996),
taking into account the screening of the nuclear charge. However, in the present
paper we are satisfied with a comparison of the first-order approximations of the
conventional theory and RST; see Fig. 1. (Contrary to the case of the conventional
theory, the first-order approximation scheme of RST already implies the screening
of the nuclear charge (Rupgt al, 2000).

The conclusion, to be drawn from such a result, surely must be that the
boson-fermion dichotomy of matter is adequately expressed by the Pauli princi-
ple. Furthermore, since this principle could be incorporated successfully into the
conventional quantum theory, the latter framework thus appears to have received
additional support of its “truth.” However these conclusions cannot imply that
the conventional quantum theory is the only theoretical framework capable of ac-
counting for the matter dichotomy. Indeed we shall demonstrate subsequently that
RST is also able to predict such a dichotomic phenomenon, albeit in a somewhat
different manner; and the corresponding theoretical predictions are comparable to
those of the conventional quantum theory, especially concerning the emergence
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Fig. 1. Total energyVE;, in first-order approximation. The RST first-order ap-
proximation (solid lines) for the two-particle interaction enef§¥1, (5.23)
approaches the pure-state result ©f — oo (i.e. VE1o(c0) = Ug). On

the other hand the experimental valu€3&;,, ™ E1,) are adopted fo€, in

the vicinity of the minimally possible valueS... The numerical coincidence
with the experimental valué®E;, = 9.63 eV and® E1, = 8.83 eV occurs for

C,(f) =062 andCi’) = 1.13. This supports the hypothesis that the electrons
in a real atom may actually be in an RST mixture rather than in a pure state. In
contrast to this, the first-order prediction (1.3) of conventional quantum theory
yields the following results (Grau, 1993):

ME5(S) = Uc + Eg = 11422 eV+ 1.194 eV= 12.616 eV
ME,(A) = Uc — Eg = 11422 eV— 1.194 eV= 10.228 eV.

of some kind of degeneracy phenomenon (see Fig. 1). More concretely, the ex-
change degeneracy of the symmetrized and antisymmetrized states (1.2) of the
conventional theory finds its RST counterpart in form of thigture degeneracy
referring to the fact that positive and negative mixtures have the same binding
energy, at least in the vicinity of the pure states. Whether the present mixture de-
generacy is broken by the interelectronic interactions in the same way as the con-
ventional exchange degeneracy (1.3) requires further clarification (in a separate

paper).

1.3. Survey of RST Results

In RST, the matter dichotomy arises via the dynamical subdivision of the set
of mixture configurations into two subsefsositive and negative mixturéthe
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Fig. 2. Mixtures and pure states. The relativistic von Neumann equation (2.5) subdivides the
density configuration space into three subsets: the pure states occl@raener, = 0, positive
mixtures ¢, = 1) are geometrically represented by the two-parted hyperboloid, and the negative
mixtures ¢, = —1) by the one-parted hyperboloid. The mixtures approach the pure states for
¢ — oo. The general RST dynamics forbids a change of the mixture type, cf. (3.60). The positive
(negative) mixtures may be considered as the RST counterparts of the bosonic (fermionic) matter
of the conventional quantum theory.

intermediate configurations are the pure states; see Fig. 2). Anyone of these two
RST mixtures exhibits some striking features reminding one strongly of the cor-
responding properties of fermionic and bosonic matter in the conventional theory:
the single-particle densities; (x) of both particles& = 1, 2) tend to assimilate

(p1(X) = p2(X) ~ charge fusioh in the positive mixture case (resembling the
Bose—Einstein condensation of bosonic matter), whereas these densities recede
from one another in the negative mixture casegharge separatioy) resembling

rather the Pauli exclusion mechanism for fermions. Thus the positive (negative)
mixtures may be considered as RST analog of bosonic (fermionic) matter of the
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conventional theory. As indicated by our preliminary perturbative results (Fig. 1),
this behavior then may lead to a similar ortho—para splitting of the helium levels in
RST similarly as it is encountered in the conventional theory. Just as in the latter
case, the negative mixturesy fermions) seem to have lower energy eigenvalue
than the positive mixtures<$ bosons), cf. the conventional splitting (1.4).

Our procedure of developing these results is the following:

In Section 2 we briefly sketch the general structure of RST insofar as it is rel-
evant for the present question of matter dichotomy. Next, in Section 3, the general
structure is specialized down to tli#-realization of RST with an abelian gauge
group (i.eU (1) x U(1)). Atthis stage, there arises the matter dichotomy in a most
natural way, namely through the observation that the density configuration space
is four-dimensional and is naturally equipped with a pseudo-Euclidean metric. It
is well known that such a geometry is characterized by a cone structure, i.e. in
the present case by &ierz coné representing geometrically the pure states. The
“positive mixturesare then represented by those points of the configuration space
which have positive squared distance from the origirirgterior of the Fierz cone)
and similarly the hegative mixturé'occupy the “exterior” cone regions with neg-
ative squared distance from the origin (see Fig. 2). Thus the Fierz cone plays here a
similar part as does the light cone in special relativity. The analogous construction
for the R?-realization of RST has been discussed in a preceding paper (Mattes
and Sorg, 1999a). The general RST dynamics forbids transitions from positive
to negative mixtures (and vice versa), similarly as in special relativity a particle
cannot be accelerated (decelerated) from subluminal (superluminal) velocity to
superluminal (subluminal) velocity.

In Section 4, the interrelationships between mixtures and pure states are stud-
ied in detail. The important point here is that all the physical densities as well as
the dynamical equations can be written in such a form that the transitions from
mixtures to pure states (and vice versa) can be continuously performed. There ex-
ists a ‘mixture variablé (¢) which measures the “purity” of a field configuration
(¢ = oo: pure stateg < oo: mixture). In order to restrict the discussion to these
mixture effects exclusively, one neglects certain components of the Hamiltonian
(the “exchange field$. This simplification enables one to eliminate the mixture
variables completely in favor of the pure-state variables so that we can describe
the mixtures exclusively in terms of the pure-state variables and some integration
constantC, (i.e. the ‘mixture parameté). However the corresponding dynam-
ical equations for the pure-state variables now become highly nonlinear for the
mixture case and acquire their usual linear form for the pure states only when
themixture paramete(C,) adopts its pure-state valu€,(= oc). Thus the latter
parameter is a nice handle to change the purity of the field configuration contin-
uously from one extremal cas€,( — oo: pure states) to a certain other extreme
situation C, — C, = 0: positive mixture limit,C, — C_ = 1: negative mixture
limit).
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In Section 5, the treatment of the static and spherically symmetric field con-
figurations is presented in great detail in order to prepare the investigation of
2-electron atoms in the last section. Similarly as in conventional quantum theory,
it is also very difficult in RST to find the exact solutions for such an intricate
physical situation, and therefore one is forced to develop an adequate pertur-
bation theory. In the corresponding first-order approximation, one then gets the
energy eigenvalues and the charge distribution for the two-particle system. This
then yields some amazing results concerning the matter dichotomy mentioned
previously:

e For any value of the mixing parameté€,, the first-order perturbation
results say thatthe positive mixtures have greater energy eigenvalue than the
negative mixtures just asis true for the symmetric case (1.4a) in comparison
to the antisymmetric case (1.4b) of the conventional theory (see Fig. 1).

e The RST energy eigenvalues depend upon the mixing paraf@giesuch
a way that in the pure-state limi€{ — oo) the results of the conventional
theory with vanishing exchange enerfy. (1.6) are reproduced (i.e. ne-
glection of the splitting into para and ortho states). This means that passing
over from an RST pure state to an RST mixture implies the splitting into
para and ortho states.

¢ In the conventional theory, the first-order exchange ené&gyl.6) (pro-
ducing the para—ortho splitting) is in bad agreement with the experimental
data. Itis true that the corresponding RST results depend upon the mixing
parameteCC, whose value cannot be fixed within the present perturbation
order, but there exist values f@, such that the first-order RST results
become arbitrarily close to the experimental data (see Fig. 1). Itis true that
the reliability of first-order perturbation theory for this range of the mix-
ing parameteC, remains to be clarified but the emergence of the mixture
degeneracy for the pure-state lifiif — oo is safely established.

e The charge densities of the positive and negative mixtures exhibit a rather
different pattern: while the densitigs, of positive mixtures assimilate
(p1(X) =~ p2(x)) and thus demonstratharge fusionthe densities of nega-
tive mixtures recede from one another and try to occupy different regions of
space (¢harge separatiop see Fig. 3). Thus the positive mixtures strongly
resemble the bosonic matter and the negative mixtures the fermionic matter
of the conventional theory.

Clearly the conventional theory provides us with the possibility to produce more
realistic predictions by taking account of the electron spins, but this possibility
exists also for the RST. Indeed, there is no problem with the Dirac theory of
the spinning electron, which may be considered as nothing else than a special
C*-realization of RST (see Mattes and Sorg, 1999b; Sigg and Sorg, 1997; Sorg,
1997b).
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Fig. 3. Electrostatic charge distributioff8p,. (a) For the pure states,( = 0 or

C,. = 00), both charge distributio® p, (4.7) coincide with the square®)( 5)?

of the amplitudes. (b) But for the negative mixtures & —1) there occurs a
completecharge separatioin the limit caseC, = C_ (=1). The first charge is
confined to thenterior regiony <y, (=3.1633)9p; £ 0,9, = 0, and from

this region the second particle is kept off. Conversely, the first particle cannot
invade in this limit the exterior region > y, which is exclusively occupied by
the second particlé®; = 0,©p, = 0. (c) For the positive mixtures{ = +1),

both charge distribution®)p, arefusedinto one another®p; = ©)p,) in the

limit C, = 0 and then together occupy all three-space& (9 < o).
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Fig. 3. (Continued

2. RELATIVISTIC SCHR ODINGER THEORY

Let us first collect the relevant results of some preceding papers into the
following sketch of the fundamental building blocks of RST in order to sufficiently
elucidate the peculiarities of that theory.

2.1. Wave Function and Intensity Matrix

In RST, matter is described by an (Hermitiandensity operatorZ(x) (i.e.
a matrix-valued section of the corresponding fiber bundle over space—time). In
general, the intensity matrik is due to a mixture but in special situations it may
be sufficient to deal exclusively with a wave functid¢{x) (i.e. the section of a
complex or real vector bundle). In this latter case the intensity maulegenerates
to the tensor product of the wave functign

IT>UQW. (2.1)

The necessary and sufficient condition for such a degeneratidrisothe Fierz
identity (Mattes and Sorg, 1999b)

I°—-7-trZ=0. (2.2)

Whenever this identity is obeyed Byit is said that matter is described by {hare
stateWw (2.1). In order to obtain some measure for the “purity”Zobne defines
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theFierz deviatorDg through (Mattes and Sorg, 1999b)
De:=71 -tr7 —71? (2.3)

and thus a necessary condition for purity is the vanishing ofFikez deviat-
ion Ag

Afp :=1tr DE. (24)

Concerning the relationship between mixtures and pure states, there does not
exist such a rigorous distinction between both concepts in RST as in conventional
guantum theory (in atomic physics) where one traditionally deals mainly with the
pure states. It was not until recently that one considers the decay of pure states into
mixtures as a most natural process (Giuéhial, 1996) and thus acknowledges
the concept of mixture as being of equal (or even higher) relevance as the pure
states. However in RST, the relationship between mixtures and pure states is more
intimate in the sense that the matter configuration is a mixture in one region of
space-time and is a pure state in an other region (determined by the zeros of the
Fierz deviationAf (2.4)). Subsequently we will present an example of this kind,
namely the mass-eigenvalue problem of a scalar two-particle system being bound
by the electrostatic Coulomb force (i.e. pointlike force center). With neglection of
the exchange effects, such a system can be parametrized by two (scalar) amplitude
fields Lo(x) and a mixing parameteC,, which is an integration constant and
measures the purity of the matter configurati@y (- oo: pure stateC, < oc:
mixture). Thus, besides the globally pure stat@s<£ oo) there are the mixtures
(C, < o0) which may, however, degenerdteally to a pure state, namely at the
zeros of the amplitude fields,. Since these amplitudes tend to zero (for localized
configurations) at spatial infinity, one has a pure state outside o) but a
mixture inside { — 0). Whether such mixtures are equipped with a greater or a
smaller binding energy in comparison to the pure states is the main concern of the
present investigation.

2.2. Hamiltonian Dynamics

The motion of matter is governed by the field equation for the intensity
operatorZ, i.e. the relativistic von Neumann equation (RNE)

DI = #:[I.ﬁu ~H,-T]. (2.5)

Here, theHamiltonian,, is a GL(N, C)-valued one-form which in general is
neither Hermitian nor anti-Hermitian. Itis to be determined fromiits field equations,
namely thantegrability condition

D, H, — DyH,, + hI—C[H,L, H,] = ihcF,, (2.6)
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and theconservation equation

i . Mc\*
12 I 7 1 — _ g
DHH, th H, |hc[< H ) + |g] 2.7
The mass operatod is assumed to be covariantly constant
DM =0, (2.8)

which can easily be achieved for identical particles by simply putting
M=M.1, (2.9)

whereM is the particle mass. But obviously thkiamiltonian dynamic§2.6) and
(2.7)] is based upon two new objedts, F,,,}, which must now be explained in
some detail.

First consider the bundle curvatufg, which is closely related to the princi-
ple of minimal couplingof matter and gauge fields. The gauge covariance of RST
is namely ensured by consistent use of the gauge covariant derifativeg. for
the Hamiltoniart,,:

DyH, =V Hy + [Ay, Hol. (2.10)

The coordinate-covariant derivative over pseudo-Riemannian space—time is de-
noted here by and.A,, is thebundle connectionne-form which takes its values

in the Lie algebra of the gauge group. The correspondimgature*,,, is defined

as usual

Fu =V, A - VA, +[A, Al (2.11)
and thus obeys the well-knowBianchi identity
DyvFuw +DyFur + Dy Fry =0. (2.12)

Furthermore, the curvaturg,, enters the integrability condition (2.6) on the right-
hand side, and therefore it is just that condition which ensures the validity of the
bundle identityfor the intensity matrixZ

[DuDy — DyDLIT = [Fou, I]. (2.13)

For the special case (2.1), where the matter system is in a purelstéte
RNE (2.5) is replaced by the relativistic Sodifiger equation (RSE)

ihcD, W =H, - ¥, (2.14)
where

DMLII # 3,}1—’ + A/L : \IJI
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and the integrability condition (2.6) then ensures the validity of the bundle identity
for v:

[D,D, — D,D,]¥ = F,, - V. (2.15)

Thus, it should have become obvious that the meaning of the integrability condition
(2.6) refers to the intrinsic consistency of the system of field equations for matter.

2.3. Gauge Field
The field equation for the gauge field itself is chosen as the (generalized)
Maxwell equation
DtF, =4rnad,. (2.16)
Here the coupling operatarmust be covariantly constar?(« = 0) in order that

the Maxwell equations (2.16) automatically imply the charge conservation law as
usual

D*J, =0, (2.17)
namely via the bundle identity for the curvatufg,
D*DYF,, = 0. (2.18)

Sometimes it may also be convenient to recast the gauge field equations in
component form. To this end, decompose the connegtipand its curvature,,,
with respect to the generatdfs?®} of the gauge group (more precisely, holonomy
group) as follows:

A, = A7 (2.19a)
]:p.v = Fa;wfac (219b)

Thefield strengths E,, read then in terms of thgauge potentials 4
Fa;w = Vu Aav - VU Aau (220)

where we have restricted ourselves to an abelian gauge groupr@,e:’] = 0),
e.g. to the product group (1) x U(1) x U(1) x --- x U(1) for an electromag-
netic N-particle system (Mattest al,, 1999).

A similar decomposition for the curreg, reads

T = jaut?® (2.21)
so that the abstract conservation law (2.17) yieldsNheonservation laws
VHjau =0 (2.22)

where
a=1,...,N (2.23)
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for the N charged particles; furthermore, the abstract Maxwell equations (2.16)
become more concretely

V¥ Fauw = 4mctjay. (2.24)

(For identical particles we can consider the coupling mairas an ordinary real
number.)

2.4. Convertor and Currents

Next turn to the second new object in the Hamiltonian dynamics, namely the
convertorgG in the conservation equation (2.7), and observe that this equation is
responsible for the conservation laws (2.22). Remember here that our total field
system consists of the RNE (2.5), the Hamiltonian dynamics [(2.6) and (2.7)], and
the Maxwell equation (2.16). But this system can be closed only through specifying
the current7,, in terms of the matter field, i.e. the intensity matfior the wave
function ¥, resp.). Clearly this specification of the curreffs in terms of the
matter field must be performed in such a way that the conservation laws (2.22)
areautomaticallyobeyed as a direct consequence of the operator equatiofis for
and?,! This requirement will then reveal the meaning of the convegton the
right-hand side of the conservation equation (2.7).

In order to get the desired link between the currgiisand the intensity
matrix Z we introduce the (Hermitian)elocity operators y, (=va,) and put

Jaw = tr(Z - Vay). (2.25)

This ansatz converts the conservation requirement for the curjgn{.22) to
the following condition upon the velocity operators:

. i -
VHjau = tr{I. (D“vau + R[HM “Vau — Vay ~H“])} 0. (2.26)

In order to meet now with this condition we subject the velocity operators to the
following requirement:

i = h
DFvg, + R(HM “Vau — Vau - H") = mga (2.27)

where the newly introduced (Hermitian) convertgisare required to obey the
following algebraic constraint:

tr(Ga - I) = 0. (2.28)
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Now it is easy to see that a solution of the requirement (2.27y{pris
given by
i
Vo = oMe
because by means of the conservation equation (2.7) we then immediately find the
Hermitian convertorgj, in terms of the formeg (2.7) as

(Hy - Ta+ Ta - Hy) (2.29)

Go = 'E(ra-g+g_- t2) = Ga. (2.30)

Indeed this is a nice result because it enables us to satisfy the original conservation
requirement for the currenig,, (2.22), as ultimately expressed by that constraint
(2.28), by simply putting

G-Z=0. (2.31a)
Additionally this algebraic constraint (2.31a), if transcribed to the wave fungtion
G-v=0, (2.31b)
ensures the validity of thiélein—-Gordon equatioiKGE)
2
DD, + (%) v =0. (2.32)

This is easily verified by differentiating once more the RSE (2.14) and applying
just the conservation equation (2.7).

2.5. Energy—Momentum Density

Thus we have obtained now a closed system of equations of motion for our
electromagnetid\-particle system. In order to gain further confidence into its
intrinsic consistency, consider the energy—momentum conservation law

VAT, = . (2.33)

Here, the force densityf, exerted upon the matter distribution emerges as the
source of the matter energy—momentum derigjtyand, according to the original
Lorentzian idea, it should be composed of the curr@ptsind field strengthB,,,, .

i.e. one expects the following form:

fu = hCFa,u.vjaM- (234)

However this result is actually obtained within the framework of our RST, provided
we construct the energy—momentum dengjty of matter in the following way:

T =tr(Z - T,) (2.35)
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and build up theenergy—momentum operatdy, in terms of the Hamiltoniaft,

1

Tw = Anr
! 2M¢c?

[Hy - Ho +Hy - Hy — Qo (HY - Hu — (M) (2.36)

2.6. Polarization

Finally, let us also mention the effect pblarizationof matter which will
subsequently help us to classify the totality of possible field configurations into
certain simple subcases. Although the Hamiltortignis in general non-Hermitian
(H, # H,), itis convenient to deal with Hermitian objects through the splitting

H, = ho(K, +iL,), (2.37)

where thekinetic field/C,, (=K,,) is the Hermitian part of the Hamiltonigid,, and
the localization field£, (=£,) constitutes its anti-Hermitian part. Introducing
this splitting into the velocity operatovg,, (2.29) yields a decomposition of these
objects into theiconvectiorandpolarizationparts

Vau = Ovay + Oy, (2.38)
Here, the convection paftlv,, is determined by the kinetic field,,
ih
©Ny, = e s Tal (2.39)
whereas the polarization part is rather related to the localizationdiglthirough
h
Plyy,, = onclCn Tal- (2.40)
Clearly this then yields an analogous splitting of the currents themselves:
ja = 9ljap + Play (2.41a)
©jap = tr(Z - Ovg,) (2.41b)
oy = tr(T - Ohva,). (2.41c)

After all the essential ingredients of RST have been collected, we can turn
to the two-particle systems being characterized by two independent and nontrivial
“charge numbersz, (a =1, 2)

2= [l (2.42)
(S
which appear as the integrals of the currefpis over some three-dimensional

(space-like) hypersurface (S) of space—time. We will consider only identical par-
ticles and will then interpret the charge humbegsas dimensionsless quantum
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numbers$; = z, = 1). Thus the integrals (2.42) acquire the status of normaliza-
tion conditions.

3. C2-REALIZATION OF RST

For a two-particle system it should be self-evident that the minimal fiber
dimensionN for the vector bundle of wave functions i = 2. Thus the wave
functions¥(x) have two components

Lyein
we (V)2 (e (3.1)
V2 Loe™'e
and the corresponding operators over the two-dimensional complex €pare
GL(2,C)-valued objects. A thorough study of these operator sections is indispens-
able for the subsequent deductions of the two-particle wave equations. Thus we

have to first clarify the&kinematicalfundamentals of the two-particle theory and
then we can discuss ithynamicalaspects.

3.1. Operator Basis and Gauge Group

As usual, the kinematics is discussed by reference to a certain operator basis.
A Hermitian basis for the operators acting over the vector fitfeis given by two
projectorsP, = (Pa)

P1-P=0 (3.23.)
Pi+Pr=1 (3.2b)
rPr=trP,=1, (3.2¢)

which may be complemented by two furthpErmutatord1, = 1'_[a(a =1, 2)such
that the following algebra holds:

{Ia, Po} = Ia (3.3a)
[P1, 18] = —[P2, T13] = i£?pI1° (3.3b)
{Ma, Mp} = 284 - 1 (3.3¢)
[Ma, Mp] = 2ieap(P1 — P2). (3.3d)

A convenient representation of this algebra is given by the Pauli matrices
{ox, oy, 07}, i.e.

P11 = %(1 +037) (3.4a)
P = }(1 —0y7) (3.4b)

2
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Iy = oy (340)
M = oy, (3.4d)

This operator basi$P,, I} is called thesingle-particle basi{SPB) because

the projectorsP, can be thought to project onto the single-particle subspaces
of the total vector fibe€? = C @ C?, so that the corresponding vector bundle of
two-particle wave functions appears as the Whitney sum of the two single-particle
bundles.

Similarly as in classical physics, a system of two point particles can be con-
sidered as one particle with internal degress of freedom (thus introducing the
center-of-mass frame). In this sense ¢éiieended-particle basid, O, I1,} (EPB)
is obtained from the SPB through

P+ Pr=1 (3.5a)
PL—Pr=Q. (3.5b)

Correspondingly, any operator can be expanded with respect to both basis sys-
tems where its components are then subject to the corresponding transformation
relations. For instance, the intensity operafaeads in the SPB formalism

1
I == papa + ESana (3.6)

(summation over double indices in opposite positions, the fiber metdgyis
—tr(za - ™) = Jap), OF it can be specified in the EPB formalism as

I=%(p-l+Q'Q+SaHa). 3.7)
Evidently the corresponding transformation formulae are then given by
p = p1+p2 (3.83)
q= 01— p2 (3.8Db)
Similar relations also apply to the kinetic fietd],
KauP? + QauI13, (SPB) (3.93)
o { 1K, -1+ 1k, Q + Qq,I1%, (EPB) (3.9)

and to the localization field,

w =

{ LauP? + Ng, I3, (SPB) (3.10a)
3L 14 31,9+ N, I3, (EPB) (3.10D)
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Furthermore, the single-particle generateydor the electromagnetic two-
particle gauge group (1) x U (1) are chosen asi(= 1, 2)

Ta = —| Pa (3.11)
and thus are covariantly constant
D,ta=0. (3.12)

And again, instead of decomposing the connectignand curvaturef,,,, with
respect to SPB (3.11) as shown in (2.19a) and (2.19b), one can resort to the EPB
decomposition

A, =—iA,-1-ia,-Q (3.13a)
Fuy = —iFu-1—-if,,0, (3.13b)
with the EPB components being related to their SPB counterparts through
A, = %(Al,w + Az) (3.14a)
a, = %(Al,w — Ao, (3.14b)
and similarly for the field strengths
o = 5(Fuun + Fau) (3.140)
fu = %(Fm — Fouw). (3.14d)

Clearly, themean gauge potentiaﬁﬂ generates thmean field strengtﬁ,w:
I’:\;w = V}LAI) - V\)A;u (3148)

and the analogous relationship holds forititernal gauge potential aandinter-
nal field strength f,:

f=V,a, —V,a,. (3.14f)

The EPB formulation seems to be advantageous because it directly leads
to the emergence of an SO(2) subbundle. Indeed the typical gauge elSmaent
U (1) x U(2) is written in the EPB form as

S = expiA-1—ia- Q)
= exp(=iA-1)-expiaQ) (3.15)

= Stot(A) ' Srel(a)



1836 Rupp and Sorg

and then itis found that the permutatdig transform as an SO(2) gauge doublet
under the action of theelative group{Sre}, i.€.

S M-S t=8e My-Sgt =Ty - Sh. (3.16)
HereSis an SO(2) element of the relative group
S$2=cosa- 52 —sin2a- &l (3.17)

and egp = —epa IS the SO(2) invariant permutation tensor in two dimensions.
The correspondingO(2) subconnectiom?, is immediately deduced from the
original U (1) x U (1) connectionA4,, by means of the covariant derivative of the
permutator doublet

DM = Iy - @Y, (3.18a)
with

w5, = —2a, - &), (3.18D)

Thus we arrive at the plausible result that theernal degree of freedom

of the extended particle is gauged by the relative subgidiy} alone. This
internal degree of freedom is not affected at all by the action of the total subgroup
{Stot} which is expected to refer to tlexternal(i.e. center-of-mass) motion of the
two-patrticle system. As a simple example for this mechanism, consider a general
U (1) x U(1) gauge transformation of the intensity matfix

I—>7=8-7-8°1
1
= E(p~1+0|~Q+s;Ha). (3.19)

Obviously, the total and relative densitipsandq remain invariant whereas the
overlap densitie$s,} transform as the components of an SO(2) vector field

S =5- S (3.20)

As a consequence the derivative of this vector must also be constructed in a gauge
covariant way:

DyuSa = 3.Sa — So,,- (3.21)

3.2. Rotating Basis and Polarization Currents

The existence of the overlap densitisgives rise to a rotating but gauge
invariant permutator doubldl, TT:

M = §,I1? (3.22a)
I = 28,1, (3.22b)

where
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With respect to thisotating basiqRTB) {1, Q, I, I} the intensity matrix reads

1 ~
7= E(,o-1+qQ+sl'I). (3.23)
Subsequently we shall frequently make use of this decompositian wF-
gether with an analogous decomposition of thehange fields £ and Ny,
occurring in the Hamiltonian [(3.9) and (3.10)]:

Quu = (”)QV« S5+ (i)QM . 8g§b (3.24a)
Na, = (”)N/L &+ (J-)NM . ggéb_ (3.24b)

The obvious advantage of the RTB is the gauge invariance of the operator com-
ponents. Therefore in place of dealing with the gauge obg¢t®,,,, and Na,

one can now resort to their gauge invariant countergafts,,, )'qQ,, "N, and

(UN,,. This enables us to write down subsequently the field equations in a gauge
invariant way. (The RTB formalism has always been used for the treatments of
Dirac’s spinor theory as a possiblé-realization of RST; see, e.g., Mattes and
Sorg, 1999b.)

Finally, let us also discuss the polarization currents with respect to the change
of basis from SPB to RTB. Originally the currents had been defined in their single-
particle form j,, (2.25). Observing here too that splitting (2.41a)—(2.41c) into
the convection and polarization parts yields for the first current by means of the
two-particle Hamiltonian [(3.9) and (3.10)]

i = @ja + P, (3.253)
©jy = l(lelu + 1. ()QM) (3.25h)
Mc 2
Py, = h 635, Np,, = Ls-mNM (3.25¢)
2Mc 2Mc

and similarly for the second current

j2e = Ojou + Pja, (3.26a)
(C)j2u~ = L <p2K2/4 + 1‘5. ()Qu) (3.26b)
Mc 2
g = _LgabSaNbM = —LS.MNM. (3.26¢)
2Mc 2Mc

From this result we learn that, for the special case of a pure d$taf@ 1), the
polarization parts(P)jau can be different from zero only when the two wave
functionsy, are overlapping and thus the overlap densityecomes nonzero!
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The single-particle densities of a pure 2-particle state assume their corresponding
special forms
pr=t(T-P) >V -Pp-¥=L32 (3.27a)
P2 =t(T-Pp) > W -Pp W =L3 (3.27b)
S = tl’(I . l_[]_) - . I, - ¥ =2L,L, cos @{1 — O(2) (327C)
S = tr(I . Hz) — 0. [T, - ¥ =2L4.L, sin (Ol]_ — Olz) (327d)
s=tr(Z-T)— ¥ -1V =2L,L,. (3.27e)
From the last equation one can now see explicitly that the overlap scattually
is nonzero only for overlapping wave packeéts (Hint: convince yourself for the

present pure-state case [(3.27a)—(3.27¢)] that the Fierz identity (2.2) is satisfied,
e.g. in the EPB form

p?—(g*>+s?) =0. (3.28)

Of course, the general form [(3.25a)—(3.26¢)] for the single-particle currents does
hold for the mixtures and not just for the pure states.
But now transcribe the single-particle currefyis to their EPB forms],, j,

J = jiu + Jou (3.29a)
j/l. = jlu, - jzll (329b)
and then find
h
J. = Z—MC('O K, +9g-k,+2s- (”)QM) (3.30a)
. h
I = M(P : ku +q-K,+2s- (L)NM)' (3.30D)

This is a very satisfying result because tbtal current J, (3.30a) does not con-
tain the polarization parts{(N,,), cf. (3.25c) and (3.26c), and is therefore built
up exclusively by the convection parts of the single-particle currents. Indeed the
total current, must be considered as arternalobject which survives the point-
particle limit (@, s| — 0) and therefore mainly describes the point-particle prop-
erties of the extended particle with a weak coupling to its intrinsic degrees of
freedom. Observe also that it is the total currgptwhich has to carry the total
charge numberN = 2) of the two-particle system, cf. (2.42)

f J,,ds#:f jlﬂ-dsurf jou-dS =2, (3.31)
(S) (S) (S)
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whereas theelative current j, appears as a “neutral” current and therefore carries
a trivial charge number:

f jﬂ-d8“=/ jlu-dS‘—/ jo, -dS* = 0. (3.32)
(S) (S) (S)

However the internal degrees of freedom of the extended particle are de-
scribed by the relative currenj, (3.30b) which contains twice the polarization
parts &YN,) of the single-particle currents. Concerning the polarization part
(j,,., observe that such a quantity does not exist in a truly (scalar) single-particle
theory where only single particle is present. Such a single-particle situation is to
be described by th€&!-realization of RST (Mattes and Sorg, 1999a), which is
the adequate description of point particles and coincides with the conventional
Klein—Gordon theory. Thus we have to conclude that the polarization properties of
either (scalar) particle of a two-particle system do arise by virtue of the presence
of the other particle! This appears plausible becaasdar particles cannot carry
intrinsic polarization.

3.3. Integrability Condition

Now that the kinematics of the two-particle systems has sufficiently been clar-
ified through the preceding considerations, one can turn to the dynamical aspects
of those systems. First let us study somewhat closer the Hamiltonian dynamics
[(2.6) and (2.7)] and defer the density dynamics (2.5) to the next subsection (the
dynamical equations for the gauge field (2.16) are not discussed in the present
paper; for their treatment, see Matttsal,, 1999). The two-particle dynamics has
already been investigated in a preceding paper (Mattes and Sorg, 1999c), but this
was done in the SPB formalism which however seems not so convenient as the
RTB formalism for the present purposes. Therefore it may be sufficient here to
take over those dynamical SPB relations which are of interest in the present con-
text, and transcribe them to their RTB from which then facilitates the subsequent
investigations.

In this sense, consider first the integrability condition (2.6) which in the first
place yields for the EPB localization field, (3.10b) the following relation:

V,L,—V,L, =0. (3.33)

Thus the vectolL, turns out to be a gradient field and therefore enables us to
introduce aramplitude field I(x) through

L2

)
L, = L

L
=2+ 3.34
E 3 (3-34)
But in contrast to this pleasant result, the other localization coeffitief@ 10b)
surely is not a gradient field in general, because the integrability condition implies
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a nontrivial curl relation:
Vi, =V, = 4((H)Nu .M, — N, - (J_)Qu — (J_)Nu -hQ, + ®ON, - (H)QM)'
(3.35)

The next interesting point refers to the kinetic fiekls andk,,, cf. (3.9b).
By means of the integrability condition, their curl is found to be related to the field
strengths but this occurs in a rather different way for the total and relative parts,
namely

VK, = V,K, =2F,, (3.36a)
and
Vuk, = VoK, = 2f,, +2G,,, (3.36b)
where theexchange field strength,G is found as
G = 2(0Q, - Q, — Q, - Q, — DN, - N, + DN, - DIN,).  (3.36c)

Observe here that the total kinetic fiefg, “feels” twice the mean field strength
If,w! The reason is that the mean fieFAR;JU refers to only one charge unit by its very
definition (3.14c) but on the other hand the total kinetic figldis related to the

total J, (3.30a) with its double charge number (3.31). This is seen more clearly
by reconstructing these currents in terms of the corresponding velocity operators

V,. andv,, which yields
Ju=1tr(Z-V,) (3.373)
Ju=1tr(Z - vy), (3.37b)
with thetotal velocity operatol,, being identical to the total kinetic field,, (up

to a constant factor)

h
K (3.38)

Thus the total velocity,, is of purely convective nature (cf. the velocity splitting
(2.38) and (2.39)), whereas the relative velowity

V=V, + Vo =

1

= m(ﬁﬂ Q4+ Q-H,) (3.39)

V, 1=V, — Vo,
contains also a polarization p&tv,,

v, =Ov, + Oy, (3.40)
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which together with its convective counterp@r’vu is found in the RTB form as

Oy, = 2Mc{ Q) = (K - Q+k, - 1) (3.41a)

h
P, = ZMC[Q L,]= MC(MN — N, - ). (3.41b)

In any case, the convective nature (3.38) of the total curdgr(B.37a) together
with its double charge number (3.31) makes it plausible that the cit],afhould
betwicethe mean fleIcFW as itis expressed by Eq. (3.36a).

But the curl relation for the relative kinetic fielg, (3.36b) has some striking
features too. Evidently this field does not only “feel” the internal field strength
f.v, being defined through Eq. (3.14d), but also ¢#xehange field strength,G
(3.36¢). It is easy to see that this field obeys the following condition in a pseudo-
Riemannian space—-time:

V;LGVA + V\JGAM + V)LG;w = 01 (342)

which is necessary and sufficient in order thataohange potential (3exists so
thatG,,, is just its curl:

G = V.G, — V,G,. (3.43)
Consequently we can rewrite the curl relation kpr(3.36b) as
v,k — V,k, = 2f,, (3.44)
so that now the modified fieltt,,
k, =k, — 2G, (3.45)

exclusively “feels” the internal field strength),, and nothing else.
Subsequently we shall make use of the modified fikldin place of the

original k,,. For instance, the SO (2) covariant derivative of the unit vegor

defined in Egs. (3.22a) and (3.22b) is found as (Mattes and Sorg, 1999c¢)

D,.8a = €28 - 'K, (3.46a)
Or similarly, the derivatives of the RTB operators are computed as

D, My ="k, -1 (3.46b)

D, Iy = —'k, - TI. (3.46¢)

Furthermore it should also be mentioned that the exchange po@ptéaiters
not only the modified kinetic fieltk, (3.45) but also plays an important part for
the remaining integrability conditions upon the Hamiltonian coeffici€s and
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Na,, which read in the RTB version
VM,(H)Q]) _ VV(H)Q[I. =1, (L)Nv =1, - (L)NM
+2(WQ, -G, —HQ,-G,) (3.47a)
VM(L)QV _ VU(L)QM — _lu ~(”)Nv +1, - (II)NM

— 2((”)Qu .G, —Q, - Gu) (3.47Db)
v//,(”)Nv _ VV(H)N[,L — _lu ,(L)Qv +1, - (L)QM
+2(WN, -G, =N, - G,) (3.47c)

vu(l)Nv _ Vv(l)NM — |M . (H)Qu 1, '(”)Qu
—2("N, -G, =N, - G,). (3.47d)

This system may look somewhat complicated but it admits the pleasant possibility
of putting three of the exchange fields to zeftq,, = ‘YN, = G, = 0) and re-
taining the other twoN,, # 0, )Q,, # 0). We shall make use of this possibility

in the next section.

3.4. Conservation Equation

Similar to the preceding discussion of the integrability condition (2.6), the
closer inspection of the conservation equation (2.7) will also yield a deeper in-
sight into the structure of RST. Here the first point arises with the convertor
G which enters the abstract conservation equation on its right-hand side (2.7).
Clearly before we can exploit this equation in a similar way as was done with
the integrability condition, one must first determine the conve&jtisom its alge-
braic constraint (2.31a) where the intensity maffiis given in its RTB form by
equation (3.23).

The solution forG in terms ofZ is most conveniently expressed by a certain
reparametrization of the latter operator. For that purpose rewrite the depsities
ands of the intensity operataf in terms of the amplitude fieldl (3.34) in the
following way:

p=2Zr-L2 (3.48)
q=2Zg-L? (3.49)
s=7Zo- L2 (3.50)

thus introducing theéenormalization factors Z, Zg, and Zo. Consequently the
intensity operatof (3.23) can be written as

I=2-12 (3.51)
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with the renormalization operatoZ being parametrized by the renormalization
factors through

1 ~
Z=3(Zr-14+Zr-Q+ Zo- M) (3.52)

Thus the previous algebraic constraint upon the convéri@.31a) is recast into
the form

G-Z2=0 (3.53)

from which we have to determirgin terms of the renormalization factars, Zg,
andZo. This is a simple algebraic problem with a four-parametric solution which
can easily be found but will not be presented here because our main interest con-
cerns the mixtures and for these the convegtarust always vanish (consequently
we will put G = 0 from now on).

With this presumption, consider first the localization coefficiept(3.10b)
for which the conservation equation says

1 Mc?
VAL S L+ 17, = KPR = Kik) + 2[<T> + N, - O

+ (J-)NM CDNK (”)QM .hgr — (J-)QM . (J-)QM:| —0. (3.54)

Sometimes it may be more instructive to work with the amplitude figd) in
place of the localization fieltl, (3.34); the present equation (3.54) then reads in
terms ofL

Mc\* 1
oL + [(T) + Z(lﬂl“ — KK, —ktk,) + (II)NM ROINZ (l)NM NENNIEZ

g, . Qe — W, . u)Qu} L-o (3.55)

Thisamplitude equatioplays an important partin RST because it essentially is the
relativistic counterpart of Schdinger’'s nonrelativistic equation from which the
energy eigenvalues of the system are to be determined (in RST one should rather
speak of anass-eigenvalue problentis can be solved exactly for the Coulomb
force in the single-particle case (Mattes and Sorg, 1999c)). Observe also that
the amplitude equation (3.55) contains the second localization coefficient which,
however, is not a gradient field, cf. (3.35). Therefore the abstract integrability
condition (2.6) does not admit, in general, a second amplitude field, obeying a
second amplitude equation, but instead we have to keep the original equation for
[, corresponding to Eq. (3.54) fdr,:

VA, + LM, — KFk, = 0. (3.56)
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Finally, let us write down the source equations for both kinetic fields
VAK, +L" K, 417k, + 4((”)QM ROINIS (J-)QM .(J-)Nu) =0 (3.57a)
V#k, +L* -k, +1"-K, =0, (3.57b)

and similarly for the remaining Hamiltonian coefficients

vrilQ, —WQ, -k + L+ . MQ, + K*. N, =0 (3.58a)
v, +MQ, -k 4+ Lt HQ, + K. - WN, =0 (3.58b)
VM(”)N# _ (J-)N# KR L (”)NM L KM (”)Q;L =0 (3.58c)
VAN, + N, ke 4 L DN, + K- DQ, = 0. (3.58d)

3.5. Density Dynamics

The RNE (2.5) is the field equation for the intensity maffixvhose RTB
decomposition (3.23) led us to the total dengityrelative densityg, and overlap
densitys. Therefore one could now transcribe the RNE into the corresponding
field equations for these individual densities. However, in the meantime we have
already introduced the associated renormalization fa&er&g, andZog [(3.48)—
(3.50)] and therefore we can at once translate the density dynamipsdoand
sinto the correspondingenormalization dynamics

0,21 = Zr -1, +2Zo - N, (3.59a)
0.2Zr = Z7 -1, — 2Zo-1Q,, (3.59D)
320 =2(Z7- N, + Zg - Q). (3.59¢)

This system admits a first integral in the form
Z2 — (23 + Z3) = o, (3.60)

where themixture index, is a constant and can be chosen without loss of generality
aso, = 0, £1. By introducing the densities (3.48)—(3.50) into the component form
(3.28) of the Fierz identity (2.2), we see that the vadye= 0 stands for th@ure
stateawhich therefore may be parametrized by thigture variable; andoverlap
angleé, as

1

71 = Eef (3.61a)
1

Zr = §e§ . C0S&, (3.61b)

1
Zo = Eef - Siné,. (3.61c)
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Foro, = +1 we have thgositive mixtures

Zt = cosh¢ (3.62a)

Zr = sinh¢ - cosg, (3.62b)

Zo = sinh¢ - siné&,, (3.62c)
and foro, = —1 thenegative mixtures

Zt = sinh¢ (3.63a)

Zr = cosht - cosg, (3.63b)

Zo = coshe - siné&,. (3.63c)

For the subsequent computations it is convenient to collect all three cases into one

formula by putting
Zy = 1/ Z% + 2(2) (364)

so that we have for all three cases

Zr = Z) - COS&q (3.65a)

Zo = Z) - Sing, (3.65hb)
with

z2 - 72 =o,; (3.66)

see also Fig. 2.

The interesting point with this threefold subdivision of the density configura-
tion space lies in the fact that the pure states, albeit separated kinematically from
the mixtures, can be approximated by the latter with unlimited precision, namely
through the limit process — oo. Whether this kinematically possible process is
also admitted by the dynamics must be studied seperately. For such a purpose, it
is convenient to consider directly the field equations for the internal varigbles
and&,. Here, one combines the two localization coefficiptand (PN, into two
new vectorsgy, andh,

9. = 2N, - cost, — 1, - sing, (3.67a)
h, = 2N, - sin& +1,, - cosé, (3.67h)

and then the desired field equations foand&, are deduced from the original
renormalization dynamics (3.59) as

9, = h,, (3.68a)

y
dufo = 2<(“Q,L + T gu). (3.68b)
|
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But with the introduction of two new dynamical variableg (h,,) one also wants

to know their field equations which are easily deduced from the corresponding
equations for the old pait f, (”)NM). Thus the curl relations for the new vectors
read

Z .
V/Lgv - vau = Z_:I-[hu Oy — hv : gu] + 4[(L)NM(COSEO . Gu + Sln%'o : (H)Qv)

—WN, - (cosg, - G, +sing - 1Q,)] (3.69a)
V,h, — V,h, = 0. (3.69b)

The last equation is of course trivial becalrgehas already been revealed to be a
gradient field, cf. (3.68a). Analogously, the source equations for the new vectors
are easily written down (Rupgt al., 2000) but are supressed here because they can
subsequently be reformulated as wave equations for two scalarfieidky . Here,

the first scalak has already been introduced through Eq. (3.68a) in connection
with the new vectoh,,, and the second scalgargenerates the other new vectpr

in a similar way

O = Zn - dux, (3.70)

provided we resort to those simplified configurations which have vanishing ex-
change field§)Q,,, "N, andG,,:

G, =WN, =0Q, =o0. (3.71)

Subsequently we will mainly be occupied with this kind of field systems. The
vanishing of the three exchange fields (3.71) leaves us with some constraints upon
the remaining fields; for instance the source equation (3.58a) for the vanishing
(hQ, fixes the directional derivative of the overlap anglealong the relative
kinetic fieldk, as

. z
K- 3,60 = (K"'g,) cosio + (K'hy) singo + =-g'k,.  (3.72)
Il

A similar constraint is implied by the source equation (3.58d) for the vanishing
(N, -
L

. Z
KI - 3,50 = (K'g,) coséo + (K'h,) singo + S-g"K,. (.73
I

4. MIXTURES AND PURE STATES

The relationship between mixtures and pure states requires some clarification.
The reason here is that the Fierz identity (2.2) establishes some algebraic constraint
for the pure states which therefore must have a reduced number of degrees of
freedom in comparison to the mixtures. On the other hand, the result of Fig. 3
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says that the pure states occupy the (two-dimensional) Fierz cone and the mixtures
occupy the (two-dimensional) hyperboloids and thus both the mixtures and the
pure states appear to possess the same number of degrees of freedom. But this
cannot be true because the pure states can be considered as the limit configuration
¢ — o0, and therefore the internal varialilenust drop out for the description of

pure states. In what way can this cancellation bé conceived? A first hint comes

from combining both reparametrizations (3.27a)—(3.27¢) and (3.48)—(3.50) of the
physical densitiesq g, s) with (3.62) for the case of the pure states:

1
p=Li4L5= Eei SLZ2=L? (4.1a)
1
q=L2-L3= zef L2 cost, = L2 cosé, (4.1b)
1
s= 2L,L, = éef - L? sing, = 'L? sin&,. (4.1¢)

Obviously the dropping af can occur through absorption into the amplitude field

L in order to generate modified amplitude field_? (:%ef - L?) as the proper
external variable for the localization properties of the 2-particle system. As a
consequence it should be possible to recast all the 2-particle equations in a form
which contains both the mixture index and the mixture variable in addition

to the modified amplitude field so that the pure-state form of that equation is
obtained by either putting, to zeroor by letting¢ tend to infinity. The remaining
variablesL andg, are then sufficient to describe the pure states.

4.1. Currents

As a first example for this procedure consider both currdpté3.29a) and
ju (3.29b). Observing here the reparametrizations of the physical densitigs
andsin terms of the renormalization factoZs, Zr, andZq (3.65) actually yields
the desired form of the currents, namely for the total current

1/Z+ h .
J, = 1) =——K, L2+ 4.2
" 2(2.. ) 2Mc Tk (4-22)
° h .
Ju = ZMC{KM + cosé, - klt + 2 sing - (H)QM} : ,LZ’ (4.2b)
and similarly for the relative current
. 1 ZT h 2 0o
= -1 K 2L 4.3
j.= oM [k, + cos, - K,, + 2N, - sing} - 'L2. (4.3b)
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Here we have made use of the modified amplitude fie{#t) which has already
been mentioned in connection with the pure states [(4.1a)—(4.1c)] and whose gen-
eral definition reads

L=z L. (4.4)

Indeed this is just the desired result, for the pure-state foig;nsfl.Zb) andjou
(4.3b) are recovered tsitherputting the mixture index, to zero in the general
form for J,, (4.2a) orj,, (4.3a)or by letting the mixture variable tend to infinity,
cf. the reparametrizations [(3.62)—(3.66)] for the renormalization factors.

Remarkably, for our special situation (3.71), the pure-state contribuﬁi,gns
(4.2b) andjO,L (4.3Db) to the complete currends (4.2a) and, (4.3a) are exclusively
built up by the pure-state variabléds and &, but not by the mixture variables
andy, even if one has a true mixture:

o h )
J, = M{K# + cosk, - k) - L2 (4.5a)
0 h /
Iy = M{ku + cos&, - K, } - L2, (4.5b)

This peculiarity is expressed even more clearly when we return again to the single-
particle currentg,,, (3.25a)—(3.26c¢) which become by means of the present sim-
plification requirement (3.71)

. h
i = _Mc'olKl’“L (4.6a)
. h
Jou = _MC'OZKZM' (4.6b)

Obviously the mixture degree of freedom has been hidden here completely behind
the scalar single-particle densitipg. In the general mixture case these may be
parametrized by the pure-state variablest, and by the mixture variablgin the
following form:

p1(X) = Gu(X) - (L1(x))* + gs(x) - (L2(x))* (4.72)
p2(x) = Gu(X) - (L2(x))* + gs(x) - (L1(x))*. (4.7b)

Here the space-time dependsfrticture functions,g andgs are defined in terms
of the renormalization factors as

1/2Z7
Ow = E(Z_” + 1) (4.8a)

1/Zr
s = E(z_.. —~ 1) (4.8b)



Positive and Negative Mixtures in Relativistic Schodinger Theory 1849

and furthermore the single-particle amplitudgsthrough

L, ="L ~cos%° (4.93)
R
L,="L ~smE. (4.9b)

Thus for the limit case of the pure stategs—{ oo) one has for the structure
functionsgy = 1 andgs = 0, and this then identifies the scalar densitigs

(4.7) with the square of the moduli of the single-particle wave functibné3.1).
However, for the more general case of a true mixture, such a 2-component wave
function ¥ = {y,;},a =1, 2 as given in (3.1), is not sufficient to describe the
mixture degree of freedom! (Similar arguments as those holding for the currents
do apply to other physical densities also, e.g. the energy—momentum depsity
(Ruppet al,, 2000).)

4.2. Gauge Interactions

The mixture degree of freedom becomes physically active via the currents as
the sources of the electromagnetic field which itself is responsible for the gauge
interactions among the particles. Thus, a mixture configuration will generate cer-
tain changes of the pure-state interactions which, e.g., may become manifest as
changes of the energy eigenvalues of bound systems (see as given later). More
concretely, the electromagnetic interactions are constructed in the following way:

In the SPB formalism, Maxwell's equations read=£ 1, 2)

V”’ Fal“) = 47'[0[* . ,jau, (4.10)

where the curvature componeritg,, have already been defined by Eq. (2.19b),
the single-particle currentf,, obey the cross-relation (4.13), aadis the elec-
tromagnetic coupling constani:(ﬁic). In order to exclude thdirect particle self-
interactions, the curvature componeRjg, also obey a cross-relation with respect
to the electromagnetic fields,,,, generated by the single-particle currejyis:

Fiw = ®F,, + Fau (4.11a)
Fouw = ®F,, + Fi,. (4.11b)

By virtue of this construction, any one of both particles feels the external field
©F,, and the field'Fy,, of the other particle but not itsown field, i.e. the
Maxwell equations are required to connect the currents and field strengths in the
following way:

v ,Fa/w =4ra, - jav, (412)
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where
v ®E,, =0.

As a consequence, the comparison of both Maxwell equations (4.10) and (4.12)
yields the cross-relation for the currents

/jlu = j2/4 (4133)
2w = Js (4.13b)

where the proper currenjg, on the right are to be identified with the RST currents
defined by Eg. (2.25).

For the present simplified situation (3.71), the source currgptare speci-
fied by Egs. (4.6a) and (4.6b) and thus contain the mixture effect exclusively via
the single-particle densities, (4.7). Since the first (second) densjiy,) also
contains the second (first) amplitude fiélg(L ;) with the structure functiogs as
a kind of weight factor (relative tg,), there ariseself-interactiondor the mix-
tures in arindirectway. In order to see this in some detail, recall that the Maxwell
equations (4.10) for the curvature compondris, imply the wave equations for
the connection components,, (2.20):

OAs, = 4oy - Jay. (4.14)
Applying the Lorentz gaug®* A,, = 0, the formal solution is given here by

Aap(X) = (eX)A/t(X) + f d*x’ B(x - X)) Jau(X) (4.15)
with an appropriate Green’s functidd(x, x'):

oD(x, X') = 8%(x — ). (4.16)

(The specification of the Green’s functi@¥(x, x’) will require an extra argument.)
Consequently the gauge potentiélg, (x) are also cross-related to the currents

Ao, = Ag(X) = @A (X) + . / d*x’ D(X, X') j2u(X) (4.17a)

'Ar, = Agu(X) = ®AL(X) + o, / d*x D(x, X) jiu(x).  (4.17b)
On the other hand the gauge potentials influence the single-particle wave functions
¥4 (3.1) via their covariant derivatives as usual
D,V =09,¥+ AV, (4.18)
i.e. in components
Duwl = = Buwl —i Aluwl (4193.)
D;U//Z = =3,,_w2 —i Agulﬁz. (419b)
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Therefore the first (second) amplitude fidlg(L ;) acts back to the first (second)
wave functiomy1(y2) by entering the second (first) currep, (j1,,) which itself
generates the first (second) gauge potemtial A»,) acting on the first (second)
wave functiomy1(v2), i.e. in symbolical and self-evident notation

|-1(|-2) Jzu(Jl,L) (‘%) Ag,( 2u) 1o = Y1(¥2). (4.20)

Observe here that this kind of self-interaction is not identical to the usual
mechanism in which thenutualgauge forces are active. As is well known, the
latter forces are working in such a way that the first (second) amplitude field
L1(L2) enters the first (second) currgnf, (j2,.), which generates the second (first)
connection component,, (A1,) acting on the second (first) wave functigp(y1);
in symbolical notation

Lk & Juia) 3, AalAu) 35 valin).  (42D)

It is important here to remark that in the first step the mutual gauge interac-
tions (4.21) rely upon the structure functigi(¢) (4.8a) whereas the former
self-interactions(4.20) rely upon the structure functian(z) (4.8b). Thus the
conventional gauge interactions survive the pure-state ligais(— o0) = 1)
whereas the self-interactions do ng¢(¢ — oc) = 0). Through this argument it
becomes obvious that the self-interactions are essentially mediated by the mix-
ture variables and thus the peculiarities of this unconventional type of inter-
action will be elucidated by considering the wave equationsfgsee as given
later).

One must concede that the description of mixtures in terms of vector poten-
tials Ay, and single-particle wave functions, may appear somewhat artificial
and uneffective. A formalism more manageable than tisA)-formalism is the
(L, K)-formalism, which relies upon the use of the localization (amplitude) and
kinetic fields in place of wave functions and vector potentials. The unconventional
self-interaction chain (4.20) reads then in the K)-formalism

. aD
Ll( 2) (46—47) JZM(JlM) (3) 1M(K2u) @31) Ll(LZ)- (4-22)

whereas the conventional gauge interaction (4.21) is transcribed as

L) B i) S KalKu) 3 Lale). (4.23)
The first step, leading from the amplitudeg to the currentsj,,, is the same
as in the {, A)-formalism [(4.20) and (4.21)] and runs via Egs. (4.6) and (4.7),
but the second and third steps (symbolizedddy and the d’Alambertiarm)
require some explanation. Here, the third step refers to the wave equations
for the amplitude fieldd_,, which contain the kinetic field&,, and shall be



1852 Rupp and Sorg

presented at length subsequently; but the second &t@pig only a minor mod-
ification of the inversion process (4.17), namely by resorting to the kinetic fields
Ka, in place of the vector potentials,,, and it can be elucidated by the following
argument:

Both the connection componemg,, and the kinetic field¥,,, have the cur-
vature components,,, as their curl, cf. (2.20), together with the SPB formulation
of the integrability conditions (2.6) for the kinetic fields reading

V. Kay — Vi Kg, = Fau. (4.24)

Therefore both vector fieldd,, andK,, may differ at most by some gradient
field (3,,«)

KaM = 3MOla + AaM. (4.25)

Thus the relationship() between the currents and the vector potentials (4.17) is
also transferred to the kinetic fields, apart from the additional emergence of the
scalar fieldsv;(x). The latter are necessary in order to guarantee the homogeneous
transformation behavior (here invariance) of the kinetic fields under a change of
gauge (parametrized by thi1) x U (1) group parametei,(x), b = 1, 2)

Kay = KL, = Kay (4.26)

an

whereas the gauge potenti#lg, and scalar fields, transformnhomogeneously
Aoy = Aoy — 03 (4.27a)
op(X) = ap(X) + ap(x). (4.27b)

(see the reconstruction of the wave functigrfrom the variables of thel(, K)-
formalism in Mattes and Sorg (1999a). These new scalar figlgg stand in close
relation to the mass eigenvaluédy) which will be further elucidated later.

The final step) of the interaction chains (4.22) and (4.23) now consists in
specifying the wave equations for the amplitude fidlgswhich will then clearly
display the coupling between the kinetic and amplitude fields.

4.3. Wave Equations

Up to now we have been mainly concerned with the kinematical setting whose
internal consistency has been found to be guaranteed by the integrability condition
(2.6). The dynamical equations, as the complementing building block of RST,
must now be considered. The starting point here is the conservation equation (2.7)
which can be transcribed to the corresponding wave equations for the scalar fields
introduced earlier: amplitude field(x) (4.4), overlap anglé&, (3.61)—(3.65), and
the mixture variables andy (3.70). Remember here that in place of the pure-state
variablesL and&, one could also resort to the single-particle amplitudgé4.9).
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Transcribing the former amplitude equation kq) (3.55) to the new variable
'L(x) (4.4) yields

Mc\2 1 12
DL+ L 28) = Z[KEK, + Kk, + 0% - 9u80] — =21 coséo(K k)
h 4 27
= % _(g"g, — h*h 4.28
(@'~ ), (4.28)

Similarly the wave equation for the overlap anglés deduced from the conserva-
tion equation fof-)Q,, (3.58b) via the first derivative &, (3.68b) as the following
modified form of the well-knowrsine—Gordon equatiofDoddet al., 1982)

Oy
z,?
Here the use of a modified localization fiéld, is due to the transition from the
amplitudeL (x) to’L(x) (4.4), i.e.

3,/'L? Zr

4 - —
LM_/L—Z_L

z
D€ +L* - 9, + Z—T sin&(K*k,) = ——=g"h,,. (4.29)
Il

I + Z|| hM‘
Observe again that the pure state forms of both wave equations (4.28) and (4.29)
can be obtained in a twofold way, namedither by directly putting the mixture
indexo, to zeroor by letting ¢ tend to infinity for nonzero mixture index.

Alternatively, one might prefer to work with the single-particle amplitudes
L, (4.9) in place of the “external” amplitude field(x) and overlap anglé,. The
corresponding amplitude equations fog are easily deduced from the present
system [(4.28) and (4.29)] and rea=£ 1, 2)

Mc)?
OLa + La-{<—> —KaﬂK;‘}:—Wng (4.31)

(4.30)

h

(summation of indices in opposite positions). The coupling matrix elenf@vs
are found here to be of the following form:

H w hﬂht
Wi, = _a*gg(‘zz—u)zf — Go(K1u KL — Ko KL) (4.32a)
H w hﬂht L L
Wap = _a*gg(’zz—”)z’ + Go(KauKE — K KL) (4.32b)
“h
Wi, = _0*9272“ SRVYAY (4.32)
I}

The present amplitude equations (4.31) have some interesting properties. First
observe that they contain the kinetic fieldg, and thus the influence of the kinetic
fields upon the amplitudels, is now clearly demonstrated (see the last stép (
for the gauge interaction schemes (4.22) and (4.23)). Second, the limit process
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¢ — oo lets the coupling elements vanistW{, — 0) and consequently we are
left with two homogeneous amplitude equations

2
OLa+ Lg- {(MTC> — Kau Kg} =0, (4.33)

which describe a pure state.(= 0). For this special case, the coupling between

the two amplitude field&.; and L, occurs exclusively via the gauge interaction

mechanism (4.23). Returning from the presdnt )-formalism to the ¢, A)-

formalism, one can reconstruct the componenief the two-particle wave func-

tion ¥ (3.1) and the single-particle wave functiottg will then obey ordinary

KGEs (see Mattes and Sorg, 1999a). However for true mixtures(i.€.0 and

0 < ¢ < o0) both matter degrees of freedom receive an additinoajaugecou-

pling by virtue of the matrix elementd/,, which are governed, besides by the

kinetic fields, essentially by the mixture varialgleThus the dynamical features

of this scalar field; (x) will determine the corresponding physical properties of

the mixture interaction. Especially if one could find some wave equatiog for

one would assume that the mixture interactions also propagate with the (local)

velocity of light just as is the case with the gauge interactions based upon the wave

equations (4.14) for the vector potentid{g, .

Indeed, such a wave equation fpican easily be deduced from the source
equation for the vector field,, (3.67b). Remember here that this vedigrhas
already been revealed as the gradient field of the sc¢atr (3.68a), and thus the
source equation fdr,, (to be deduced from the source equationsfot,, (3.58¢)
and forl, (3.56)) is nothing else than the desired wave equatiog for

z
0z +L* -9, — Z—Taﬂg S8,¢ = Zydtx - Do + COSE, - Kiky.  (4.34)
I}

Obviously, the mixture variable couples also to the other scalar variagleso

that we have to supply the wave equation for the latter varialiteorder to close

the dynamical system. This wave equation is obtained in a similar way from the
source equation for the other vector figld which is related to the scalgr by

the former gradient condition (3.70). Thus one finds fothe following wave
equation:

Z 1 .
Ox + (’L” + —Ta";) <dux = —=—sing - (K*k,)
Z) Z)

1
— Z—”h“ (0,60 — Z10,x). (4.35)

The four wave equations (4.31), (4.34), and (4.35) are valid for that simplified
situation defined by the requirement (3.71) for vanishing exchange f@&lds
WN,, ("Q,, but nonzero exchange fieltjsand"N,,. Obviously there can be no
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hope to get an exact solution to such a highly non-linear and intricately coupled
system. But fortunately the situation can be further simplified by neglection of the
two remaining exchange fielé9Q, and("N,,. We shall readily see that, by this
assumption, the mixture interaction becomes “local” (i.e. some kind of “overlap
force” arises).

4.4. Vanishing Exchange Fields

It is not only for the sake of simplicity but it also provides us with a better
understanding of the relationships between the exchange effects and mixture phe-
nomena when we completely neglect the exchange field§'0i@, = ('N,, = 0)
but retain the mixture character of the system é.e= +1). In order to clearly see
the specific kind of simplification which is produced by this neglection, write down
both the exchange fields in terms of the mixture varialglesd x, cf. (3.68b),
together with (3.70)

1 |
W, = é(a,g —Z1d,x)=0 (4.36)
and

1 .
N, = E(cosgo - Zy - 8, x + sing - 8,£) = 0. (4.37)

This system can be understood as a first integral of the wave equatian@{8e)
andy (4.35) (Hint: check this by differentiating once more the system [(4.36) and
(4.37)] and using the wave equations {ory, andg,).

The point with the vanishing of all the exchange fields is now that the system
[(4.36) and (4.37)] admits a formal solution, namely

V1+C2-cos(x — x«) o, =+1
COSEp = (4.38a)

—/C2—1-sinh(x — xs), ox=-1
C.

T (4.38b)

Zy(¢) =

This solution establishes a rigid link between the mixture variablesand the
pure-state variablé,. Since the latter quantity is related to the single-particle
amplitudes. , via (cf. (4.9a) and (4.9b))

. L.L>
siné, = 2 4.39a
L2 L2
COoSEy = —+——2 (4.39b)

Lf+ L%
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one can actually express the mixture varialglesd y through the single-particle
amplitudeslL 5. Thus what remains to be done is simply to eliminate the mixture
variable ¢ from the coupling matriXx\;, [(4.31) and (4.32)] by means of the
relationships (4.38a) and (4.38b) via

g“hﬂ Ll L% — L% . (LlaﬂLz — L28ML1)(L18“L2 — L23“L1)

=-LiL>
2z} (L2+12)° 0. L2124 (C,/2 (L2 + L2)?
(4.40a)
g'ugu - hﬂhu
(2Zy)?
2
_ 4L5L5 - (LF - L)) (L1dyLa — L2d,La)(L19" Lo — L20"Ly) (4.40b)

(L2 +L3)? 40,1213 +C2(L3 + L))®

Observe also that the structure functain front of the kinetic fields (4.32a) and
(4.32b) within the coupling matri¥,, can be expressed in terms of the amplitude
fields as

22 2\?( Lilks \? Sir? &
T-1 Z) (SE2E ) =14+0,2220 4.41
2 +U*(C*) <L§+ L§> Tocz (4.41)

In this way, we actually see that the amplitude system (4.31) contains only
pure-state variables where the nonlinearity induced by the coupling nvaltgx
is caused by the mixture effect. The latter may be parametrized bynikiag
parameter G (4.38) so that folC, — oo the mixture system (4.31) tends again
to the pure-state case (4.33). If the same elimination procedure of the mixture
variable¢ in favor of the amplitude field$ 5 is carried through for the single-
particle densitiep, (4.7), one gets these densities as exclusive functions of the
amplitude fields. This result comes about via the structure functigngt.8a)
and gs (4.8b) which both become functions of the amplitudesby means of
the link (4.41) between the renormalization factors and these amplitudes. The fact
that any one of both densitigg (a = 1, 2) is determined simultaneously by both
amplitude fields may be considered as a kindloid-dynamical entanglement
because a clear association of any one of the conserved cujggias= 1, 2) to
a definite amplitude field , is no longer possible for the mixtures.

Clearly the fortunate emergence of such a nice paran@teadmitting the
continuous transition from mixtures to pure states, can be exploited in order to
establish a perturbation expansion (in power€pf) of the mixture results, <
o0) around the pure-state resul@,(= co). However in order to get a qualitative
picture of what happens for small enough value<of far from the pure-state
limit (C, — o0), we cannot apply such an expansion but rather have to deal with
the exact analytic expressions with respect to the mixing parameter.
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5. PERTURBATIVE APPROACH

An approximative treatment of two-particle systems is possible in two ways:
first, one can consider the electromagnetic interactions between the two particles
(e.g. being trapped in an “external” force field) as a perturbation just as is done
in conventional quantum mechanics. The unperturbed situation then refers to the
presence of two noninteracting particles in the same external force field and thus
would lead us to two bound single-particle states in the same external field as
the point of departure for a perturbation expansion. Second, one may consider
the mixture effects as a perturbation of the pure-state situation. Since the mixing
parametelC,, introduced through Eq. (4.38b) for the special case of vanishing
exchange fields, admits to switch on and off the mixture effect continuoQglhy{

00 pure states) one may think here of a perturbation expansion in terms of powers
of C,.. In contrast to this the perturbation expansion with respect to the interparticle
interactions would be based upon the electromagnetic coupling coast(atﬁ%).
Subsequently we shall treat both perturbative aspects on the same footing and will
consider only the first-order approximation.

5.1. Single-Particle Concepts vs. Center-of-Mass Approach

The perturbative treatment of the electrostatic fields of the two particles will
be considerably facilitated by our simplification assumptions (3.71). The reason is
that the exchange field streng#),, (3.43) must necessarily vanish whenever the
generating exchange potentf@), is zero. Thus the general curl relation for the
relative kinetic fieldk,, (3.36b) reads simply

V.k, — Vok, = 2f,, (5.1)
Iz 1 Iz

and the modified fieltk, (3.45) can be identified with the originka} .

As a consequence, the SPB version of the EPB curl relation [(3.36a) and
(3.36b)] could be simplified as shown in Eq. (4.24), where the properties of the
SPB curvature componerits,,, have already been described through Egs. (4.11)-
(4.13). According to that construction, any curvature compoigpt (a = 1, 2)
is the sum of the external fielF,, and the single-particle fieltFy,,, being
generated by thether particle. Thus the external fiel@F,,, being felt by any
one of both particles, appears to be “averted” by the figJg, of the other particle.
Similarly the total kinetic fieldK,, feeling twice the mean fieléw (3.36a), sees
the double external fieléfF,, being averted through the sum of both single-
particle fields

VK, — V,K, =2F,, = 2F,, — (‘F1,, + Fou). (5.2)

More concretely, if the external fiel@F,, is due to a static point charge
carryingzey charge units, then the totkl, sees the double charge number £,)
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being screened by two charge units<£22; + z,). This is very plausible because
the total fieldK,, describes thexternal(i.e. center-of-mass) motion of the two-
particle system, whereas the relative figJdrather refers to itsnternal degrees

of freedom. The residual effect of the internal motion upon the external motion
is then described by the sum of the single-particle fields on the right-hand side of
Eq. (5.2). On the other hand, the external fi€f,,, has no direct influence upon

the internal motion as may be seen from the curl relation (5.1), with the internal
field strengthf ., (3.14d) being independent of the exterffaF,,,:

1 1,
fu,v = E(Flp_u - F2;1.v) = _E( Fl/w - /F2;w)~ (53)

Thus there arise two possibilities for establishing a perturbation theory:
(i) either one tries to solve the external problem alone (neglecting the internal
degrees of freedom) and then one considers the internal motion as a perturbation
or (ii) one tries to first solve both single-particle problems in the external field
alone, cf. (4.33), and afterwards one considers the single-particle interadtigns
(4.31) as a perturbation.

Subsequently we will carry through the second proposal based upon the
single-particle concepts.

5.2. Perturbation Expansion

As usual in the conventional perturbation theory, one considers the field ob-
jects as a sum of individual terms whose magnitudes are decaying from order to
order, i.e. we put for the amplitude fields

La(¥) = OLa(x) + OLa(x) + @La(x) + - - (5.4)
and similarly for the kinetic fields
Ka(x) = OKa(x) + PKa(x) + @PKa(x) + - - (5.5)

Substituting the amplitude exapansions (5.4) into the corresponding field equations
(4.31), one just finds for the lowest-order approximatfin, (x) the disentangled
situation (4.33). i.e.

© . © M\ o Opn
O La + La T - KaM . Ka - 0 (56)

Furthermore it is assumed that the kinetic field does not feel the interparticle forces
but only the external force, i.e. one puts in lowest order (cf. (4.25))

OK,, = 8, s + A, (5.7)
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More concretely, for a static and spherically symmetric field configuration
one puts (Ruppet al,, 2000)

@A, = A(r) - £, (5.8)

wherer denotes the radial coordinate and=a, x°) is a unit vector pointing into
the time directionf" f, = +1). For instance, for the Coulomb potential witk
charge units placed in the origin (at= 0) one has

Aerr) = Zex—. (5.9)

Next, it should be evident that for such a symmetric situation the phase angles
aa(X) (4.27b) can only depend upon the time coordinaf® (n the following

form:

MaC
h
where the integration constarit4, are themass eigenvalues the (bound) par-
ticles. As a consequence of these symmetry requirements, the zero-order kinetic
fields @Ky, &OKa(r) - £,,) are found to be of the following form

OM. - ¢
OKa(r) = r? +zex%, (5.11)

Ora(X) = (5.10)

where©M, are the zero-order mass eigenvalues. For such a simple situation, the
static form of the amplitude equations (5.6) reads

o ., © Mc\? o 12
—AOLy + OLa () = (OKa)*r =0 (5.12)

and admits the well-known energy eigenfunctis, (r ) of the relativistic (scalar)

hydrogen atom
S
OLry=L- éia(y). (5.13)

The eigenfunctiong ,(y) are well known and may be looked up in any textbook
about relativistic quantum mechanics (e.g., Messiah, 1965). Moreovgesome
normalization constant which is unity for the pure states=£ O: L= 1) but in
general depends upon the mixing paramétgrandag (#M“—;) is the Bohr radius.

Since our present endeavors aim at the mixture effects but not at the rela-
tivistic corrections, we can be satisfied with the nonrelativistic approximation to
the eigenfunction& ,(y) which then become, e.g., for the single-particle ground
state (k)

Li(y) = exp(-y), (5.14)
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or for the first excited state €2

La(y) = % : (1— )—2/> exp(—%). (5.15)

Correspondingly, the mass eigenval@sl, are also known exactly but for the
present nonrelativistic limit we may be satisfied with working with the nonrela-
tivistic binding energie§)Eg , in lowest order

12

OFg, = (M — OM,) - ¢2 (5.16a)

12

ol NI

OFg, = (M — OM,) . ¢2 (5.16b)

5.3. Density Deformations

The present zero-order results are already sufficient in order to demonstrate
certain RST peculiarities concerning the scalar densjtiet.7). The physical
relevance of these densities originates from the fact that they essentially de-
termine the interaction potentials,,, (4.17) via the currents,, (4.6). Indeed
one can easily show that in the first-order approximation these potetitials
(= 'Aa(r) - f,,) can be written down in terms of the scalar densities as (Rupp
2000)

©Opa()
F =

'AD(r) = a, / dv’ (5.17)

Here the zero-order densitié8p, are obtained by introducing the zero-order
amplitudes®L, (5.13) into the defining equations (4.7). The resulting single-
particle potential$A(Y (5.17) are then considered as first-order objects entering
the first-order correctiori®K, of the kinetic fields (5.5) as follows:

OM

WK, (r) = Tlc —AD) (5.18a)
Om

WK (1) = Tzc — A0, (5.18b)

Since the kinetic fields are acting back upon the amplitudeaccording to the
last step 1) of the interaction schemes (4.22) and (4.23), the influence of the
densities®p, upon the first-order mass correctiofi¥, is evident. Observe
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here that these mass corrections themselves may be computed from the first-order
amplitude equations

Mc)?
_A(l)La + (l)La{ <T) _ ((O)Ka)z} — 2(O)La ((O)Ka . (l)Ka) _ (l)vv;) . (1)Lb

(5.19)

which neccessarily must contain the first-order kinetic fiéld§, (5.18). (The
first-order mixture coupling elemerifd\;;, are obtained by introducing the zero-
order amplitude&)L , into their defining equations (4.32) with observation of the
scalar products (4.40).)

Now that the role of the densitié€8p, has become clear, the interesting point
with these densities refers to their deformation when the mixing parar@Ggter
varies from infinity & pure states) up to its minimal possible value which is
C_ = 1for the negative mixtures{ = —1) andC, = O for the positive mixtures
(0. = +1); see Fig. 3. For the pure state8, (= 0o), the densities®p, (4.7)
coincide with the square$’),)? of the amplitudes because here the structure
functiong,, (4.8a) is identical to unity angs (4.8b) vanishes. But with decreasing
mixing parametelC, the densities are deformed considerably away from their
original amplitude shape and this deformation occurs for the two types of mixtures
(0. = £1) in a rather different way:

(i) Forthepositivemixtures ¢, = +1), both densities tend to become iden-
tical and arrive at the complete identitf)f, = ©p,) for the minimal
possible valu€, = 0 (~ charge fusio

(i) However for thenegativemixtures ¢, = —1), both densities tend to
recede from each other and thus try to occupy non-overlapping regions
in three-space such that the complelarge separatiolis achieved for
the minimal possible valu€_ = 1 of the mixing parametet,.

Clearly, such a dichotomy of the behavior of the RST matter strongly reminds
one of the corresponding boson—fermion dichotomy of matter in the conventional
guantum theory. There the well-known Pauli exclusion principle says (among
other things) that fermionic single-particle wave functions are reluctant to occupy
the same region of three-space whereas the wave functions of bosonic particles
even tend to fuse into a single one (as, e.g., during the process of Bose—Einstein
condensation). Such a dichotomic behavior of matter must necessarily lead to ex-
perimental consequences, hamely concerning the energy levels available for any
type of matter bound by an attractive force. Here one would like to think that
the fermionic matter occupies a lower energy level in comparison to the bosonic
case because the charge separation (classically spoken) lowers the electrostatic
interaction energy of the fermions whereas the charge fusion is expected to in-
crease the interaction energy of the bosons. Indeed this expectation is realized
in the conventional quantum theory (see Section 1) but it is also true in RST



1862 Rupp and Sorg

as can readily be demonstrated for the present two-particle situation described
previously.

5.4. Two-Particle Interaction Energy

Suppose the present two-particle mass-eigenvalue problem (4.31) for the
Coulomb potentialex(r) (5.9) admits an exact solution. In this ideal situation, the
perturbation expansion for the kinetic fields (5.5) would converge to the exact form

K1) = T2 4 Aa(r) — Aolr) (5.20a)
Koft) = T 4 Aalt) — () (5.20b)

and thus both mass eigenvaludg would be known exactly. Also known exactly
are the zero-order valu€4V, which apply for the situation when the interparticle
interactions (of both electromagnetic and mixture type) are switched-off, i.e. for
'Aa = 0 andC, — oo. The exact total masM,, of the 2-particle system with
switched-on interactions could then be defined as

1
Miz = Z{OMs + M1 + OM; + Mo} (5.21)

This appears to be a plausible proposition becaddsgreduces to the sum of
the individual mass eigenvalu®¥V, when the interactions are switched-off and
thus M, = ©M,. Furthermore the interaction energyl{; — OM; — OM,) is
partitioned to both matter modes according to the scheme

Mz — {OM; + OM,} = %(Ml - Omy) + %(M2 — Omy), (5.22)

i.e. both matter degrees of freedom contribute with the same wéght (
In the first-order approximation one concludes from this for the total mass
correction®™My, produced by the 2-particle interactions

1
M3, = é{(l)Ml + WMy}, (5.23)

where the individual mass correctiod#M, can be computed by means of the
first-order amplitude equations (5.19) applying standard methods of perturbation
theory (Ruppet al, 2000). The result for the interaction enef§1, = MMy, - ¢2

is plotted in Fig. 1 which demonstrates some interesting features (for the technical
details, see Rupet al., 2000):

(i) ForC, — oo (pure states) the mixture coupling vanishes (Mg, = 0)
and we are left with two disentangled particles. These are described by
the decoupled amplitude system (4.33) and are subject exclusively to
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the electrostatic gauge interactions, as it is symbolized by the interac-
tion scheme (4.23) for the limit cas& = oo. Therefore one expects
the interaction energ{PEj, to be identical with the classical electro-
static interaction energyJ¢) of the two charge clouds produced by the
(normalized) single-particle amplitud@éi_a(F):

(© OL,(71)?
Uc_eZ/dV/dV/ La(P)"- (OLa(") . (5.24)

F -
For the (B, 2s)-configuration (5.13)—(5.16) one finds (either in the lit-
erature (Grau, 1993) or by explicit calculation)

Uc(lS ZS) 81

As shown by Fig. 1, this limit requirement is actually reproduced by
our perturbative approach which therefore is reliable with respect to the
gauge interactions.

(i) Now switching-on the mixture interactions means decreasing the value
of the mixing paramete€,. from infinity to finite values C, < oc0). As
the numerical results demonstrate (Fig. 1), the interaction efBEy
decreases with decreasi@y and thus tends toward the experimental
values for the symmetric (S) and antisymmetric (A) 2-particle config-
urations. In this sense, the RST perturbation results come closer to the
experimental values than the first-order predictids £ Eg) of con-
ventional guantum theory (cf. Section 1). Observe also that for identical
values of the mixing paramet€, the interaction energy for the positive
mixtures ¢, = +1) is greater than for the negative mixtures & —1).

This supports the hypothesis of attributing the negative (positive) RST
mixtures to fermionic (bosonic) matter.

(i) A certain problem arises for the present first-order perturbation result of
RST when the mixing paramet€, approaches its minimal valu@.
(negative mixturesC, — C_ = 1; positive mixturesC, — C, = 0).

In both cases, the interaction enef§¥, becomes infinite PE;, —

—o0). Clearly, this signals a breakdown of the first-order approximation.
Since the exact solution is not known, it is presently unclear what really
happens whe@, approachesits minimally possible valus. Observe,
however, that for the present first-order apprOX|mat|0n one can fix the
mixing parametet, in such awayC, = c! ) that the present first-
order result exactly agrees with the experimental values (albeit the latter
refer tospinningelectrons whereas we are satisfied with the treatment
of scalar charged particles).

(iv) As is suggested by the numerical results of Fig. 3, there should exist
a kind of asymptotic mixture degeneragythe sense that not only for

eZ
zex% ~ 5.711- z [eV]. (5.25)
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the pure states themselvés, (= oo) but also in the vicinity of the pure
states C, — o00) the energy eigenvaluéSE;, of positive ¢, = +1)

and negatived, = —1) mixtures become identical! This obvious sug-
gestion will be clarified by an analytic computation for that asymptotic
region (see a separate paper, by Rupp and Sorg, 2000). Such a mixture
degeneracy represents the RST analog of the conventional exchange de-
generacy, cf. the corresponding remarks in connection with Egs. (1.2a)
and (1.2b).
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